- PII
- 10.31857/S2686953522600349-1
- DOI
- 10.31857/S2686953522600349
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 508 / Issue number 1
- Pages
- 70-78
- Abstract
- The concept of a complex catalytic processing of organochlorine production wastes using self-organizing nickel-based catalysts is proposed. Using 1,2‑dichloroethane as a model compound, the process of carbon erosion of a bulk Ni‑Cr alloy with the formation of dispersed particles catalyzing the growth of carbon nanofibers has been studied. This approach was found to be versatile and applicable for the processing of multicomponent mixtures of chlorine-substituted hydrocarbons, including the real wastes of polyvinyl chloride production. The prospects of using the carbon nanomaterial obtained from chlorine-containing waste to produce polymer composites are discussed.
- Keywords
- углеродная эрозия никелевые катализаторы хлорзамещенные углеводороды переработка отходов углеродные нановолокна
- Date of publication
- 18.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 7
References
- 1. Rogers L., Jensen K.F. // Green chem. 2019. V. 21. № 13. P. 3481–3498. https://doi.org/10.1039/C9GC00773C
- 2. Pan D., Su F., Liu H., Liu C., Umar A., Castañeda L., Algadi H., Wang C., Guo Z. // ES Mater. Manuf. 2021. V. 11. № 6. P. 3–15. https://doi.org/10.30919/esmm5f415
- 3. Kosloski-Oh S.C., Wood Z.A., Manjarrez Y., de Los Rios J.P., Fieser M.E. // Mater. Horizons. 2021. V. 8. № 4. P. 1084–1129. https://doi.org/10.1039/D0MH01286F
- 4. Демина Т.Я., Шаяхметова Л.Р. // Вестник ОГУ. 2005. № 10–2. С. 10–13.
- 5. Hiraoka T., Kawakubo T., Kimura J., Taniguchi R., Okamoto A., Okazaki T., Sugai T., Ozeki Y., Yoshikawac M., Shinohara H. // Chem. Phys. Lett. 2003. V. 382. № 5–6. P. 679–685. https://doi.org/10.1016/j.cplett.2003.10.123
- 6. Kenzhin R.M., Bauman Y.I., Volodin A.M., Mishakov I.V., Vedyagin A.A. // Appl. Surf. Sci. 2018. V. 427. P. 505–510. https://doi.org/10.1016/j.apsusc.2017.08.227
- 7. Мишаков И.В., Чесноков В.В., Буянов Р.А., Пахо-мов Н.А. // Кинетика и катализ. 2001. Т. 42. № 4. С. 598–603.
- 8. Nieto-Márquez A., Valverde J.L., Keane M.A. // Appl. Catal. A Gen. 2007. V. 332. № 2. P. 237–246. https://doi.org/10.1016/j.apcata.2007.08.028
- 9. Cherukuri L.D., Yuan G., Keane M.A. // Top. Catal. 2004. V. 29. № 3. P. 119–128. https://doi.org/10.1023/B:TOCA.0000029794.03727.ef
- 10. Keane M.A., Jacobs G., Patterson P.M. // J. Colloid. Interface Sci. 2006. V. 302. № 2. P. 576–588. https://doi.org/10.1016/j.jcis.2006.06.057
- 11. Shaikjee A., Coville N.J. // Carbon. 2012. V. 50. P. 1099–1108. https://doi.org/10.1016/j.carbon.2011.10.020
- 12. Maboya W.K., Coville N.J., Mhlanga S.D. // S. Afr. J. Chem. 2016. V. 69. P. 15–26. https://doi.org/10.17159/0379-4350/2016/v69a3
- 13. Brichka S.Ya., Prikhod’ko G.P., Sementsov Yu.I., Brichka A.V., Dovbeshko G.I., Paschuk O.P. // Carbon. 2004. V. 42. P. 2581–2587. https://doi.org/10.1016/j.carbon.2004.05.040
- 14. Shaikjee A., Coville N.J. // Mater. Lett. 2012. V. 68. P. 273–276. https://doi.org/10.1016/j.matlet.2011.10.083
- 15. Lin W.-H., Li Y.-Y. // Mater. Chem. Phys. 2015. V. 163. P. 123–129. https://doi.org/10.1016/j.matchemphys.2015.07.022
- 16. Lv R., Kang F., Wang W., Wei J., Gu J., Wang K., Wu D. // Carbon. 2007. V. 45. P. 1433–1438. https://doi.org/10.1016/j.carbon.2007.03.032
- 17. Mishakov I.V., Bauman Y.I., Korneev D.V., Vedyagin A.A. // Top. Catal. 2013. V. 56. № 11. P. 1026–1032. https://doi.org/10.1007/s11244-013-0066-6
- 18. Mishakov I.V., Korneev D.V., Bauman Y.I., Vedyagin AA., Nalivaiko A.Y., Shubin Yu.V., Gromov A.A. // Surf. Interfaces. 2022. V. 30. P. 101914. https://doi.org/10.1016/j.surfin.2022.101914
- 19. Мишаков И.В., Бауман Ю.И., Потылицына А.Р., Шубин Ю.В., Плюснин П.Е., Стояновский В.О., Ведягин А.А. // Кинетика и катализ. 2022. Т. 63. № 1. С. 86–98.
- 20. Bauman Y.I., Mishakov I.V., Rudneva Y.V., Plyusnin P.E., Shubin Yu.V., Korneev D.V., Vedyagin A.A. // Ind. Eng. Chem. Res. 2018. V. 58. № 2. P. 685–694. https://doi.org/10.1021/acs.iecr.8b02186
- 21. Al-Saleh M.H., Sundararaj U. // Compos. Part A Appl. Sci Manuf. 2011. V. 42. № 12. P. 2126–2142. https://doi.org/10.1016/j.compositesa.2011.08.005
- 22. Rana S., Alagirusamy R., Joshi M. // Compos. Part A. 2011. V. 42. № 5. P. 439–445. https://doi.org/10.1016/j.compositesa.2010.12.018
- 23. Poveda R.L., Gupta N. // Mater. Des. 2014. V. 56. P. 416–422. https://doi.org/10.1016/j.matdes.2013.11.074
- 24. Wang C., Bauman Y.I., Mishakov I.V., Stoyanovskii V.O., Shelepova E.V., Vedyagin A.A. // Processes. 2022. V. 10. № 3. P. 506. https://doi.org/10.3390/pr10030506
- 25. Бауман Ю.И., Мишаков И.В., Ведягин А.А., Дмитриев С.В., Мельгунов М.С., Буянов Р.А. // Катализ в промышленности. 2012. № 2. С. 18–24.
- 26. Yokoyama A., Sato Y., Nodasaka Y., Yamamoto S., Kawasaki T., Shindoh M., Kohgo T., Akasaka T., Uo M., Watari F., Tohji K. //Nano Lett. 2005. V. 5. № 1. P. 157–161. https://doi.org/10.1021/nl0484752
- 27. Ahmad N., Kausar A., Muhammad B. // Polym. Plast. Technol. Eng. 2016. V. 55. № 10. P. 1076–1098. https://doi.org/10.1080/03602559.2016.1163587
- 28. Буянов Р.А., Чесноков В.В. // Химия в интересах устойчивого развития. 2005. Т. 13. № 1. С. 37–40.
- 29. Mishakov I.V., Bauman Yu.I., Streltsov I.A., Korneev D.V., Vinokurova O.B., Vedyagin A.A. // Resour. Effic. Technol. 2016. V. 2. № 2. P. 61–67. https://doi.org/10.1016/j.reffit.2016.06.004