RAS PresidiumДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

SYNTHESIS OF ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE WITH HIGH MELTING POINT IN OCTAFLUOROBUTANE MEDIUM

PII
10.31857/S2686953522600350-1
DOI
10.31857/S2686953522600350
Publication type
Status
Published
Authors
Volume/ Edition
Volume 508 / Issue number 1
Pages
64-69
Abstract
Ultra-high molecular weight polyethylene (UHMWPE) with a high melting point (Tm) up to 144°C was successfully obtained by suspension polymerization in 1,4-H-octafluorobutane medium initiated by Ziegler–Natta catalysts. This method makes it possible successfully to carry out polymerization at a temperature close to ambient one and an ethylene pressure close to atmospheric one. The resulting polyethylenes were characterized by IR spectroscopy, elemental analysis and derivatographic studies. Values of melting points and degrees of crystallinity of the synthesized polymers were obtained using these data.
Keywords
сверхвысокомолекулярный полиэтилен суспензионная полимеризация фторированная среда 1,4<i>Н</i>-октафторбутан дериватографические исследования
Date of publication
18.09.2025
Year of publication
2025
Number of purchasers
0
Views
7

References

  1. 1. The UHMWPE handbook: ultra-high molecular weight polyethylene in total joint replacement. 1st ed. Kurtz S. (Ed.). New York: Academic Press, 2004. 379 p.
  2. 2. Stein H.L. Ultrahigh molecular weight polyethylenes (UHMWPE). In: Engineered materials handbook, 1998. V. 2. P. 167.
  3. 3. Handbook of fiber science and technology. V. 3: High technology fibers. Lewin M., Preston J. (Eds.). CRC Press, 1996.
  4. 4. Antonov A.A., Bryliakov, K.P. // Eur. Polym. J. 2021. V. 142. Art. 110162. https://doi.org/10.1016/j.eurpolymj.2020.110162
  5. 5. Chen Z., Mesgar M., White P.S., Daugulis O., Brook-hart M. // ACS Catal. 2015. V. 5. № 2. P. 631–636. https://doi.org/10.1021/cs501948d
  6. 6. Zou C., Dai S., Chen C. // Macromolecules. 2018. V. 51. P. 49–56. https://doi.org/10.1021/acs.macromol.7b02156
  7. 7. Tan C., Pang W.M., Chen C.L. // Chinese J. Polym. Sci. 2019. V. 37. P. 974–980. https://doi.org/10.1007/s10118-019-2232-1
  8. 8. Sun M., Mu Y., Wu Q., Gao W., Ye L. // New J. Chem. 2010. V. 34. P. 2979–2987. https://doi.org/10.1039/c0nj00439a
  9. 9. Romano D., Ronca S., Rastogi S. // Macromol. Rapid Commun. 2015. V. 36. № 3. P. 327–331. https://doi.org/10.1002/marc.201400514
  10. 10. Huang C., Vignesh A., Bariashir C., Ma Y., Sun Y., Sun W.-H. // New J. Chem. 2019. V. 43. P. 11307–11315. https://doi.org/10.1039/C9NJ02793A
  11. 11. Spronck M., Klein A., Blom B., Romano D. Z. // Anorg. Allg. Chem. 2018. V. 644. P. 993–998. https://doi.org/10.1002/zaac.201800165
  12. 12. Tuskaev V.A., Gagieva S.Ch., Kurmaev D.A., Bogda-nov V.S., Magomedov K.F., Mikhaylik E.S., Golubev E.K., Buzin M.I., Nikiforova G.G., Vasil’ev V.G., Khrustalev V.N., Dorovatovskii P.V., Bakirov A.V., Shcherbina M.A., Dzhevakov P.B., Bulychev B.M. // Appl. Organomet. Chem. 2021. V. 35. № 7. Art. e6256. https://doi.org/10.1002/aoc.6256
  13. 13. Liu K., Wu Q., Mu X., Gao W., Mu Y. // Polyhedron. 2013. V. 52. P. 222–226. https://doi.org/10.1016/j.poly.2012.09.044
  14. 14. Schnitte M., Scholliers J.S., Riedmiller K., Mecking S. // Angew. Chem., Int. Ed. 2020. V. 59. № 8. P. 3258–3263. https://doi.org/10.1002/anie.201913117
  15. 15. Kenyon P., Mecking S. // J. Am. Chem. Soc. 2017. V. 139. № 39. P. 13786–13790. https://doi.org/10.1021/jacs.7b06745
  16. 16. Несын Г.В., Станкевич В.С., Сулейманова Ю.В., Шелудченко С.С., Еремкин С.М., Казаков Ю.М. Способ получения антитурбулентной присадки суспензионного типа. Патент РФ 2443720 C1. 2010.
  17. 17. Русинов П.Г., Балашов А.В., Нифантьев И.Е. Способ получения противотурбулентной присадки и противотурбулентная присадка, полученная на его основе. Патент РФ 2579583 C1. 2015.
  18. 18. Yakovlev S.V., Artem’ev G.A., Rasputin N.A., Rusinov P.G., Nifant’ev I.E., Charushin V.N., Kopchuk D.S. // AIP Conf. Proceedings. 2019. V. 2063. Art. 040067. https://doi.org/10.1063/1.5087399
  19. 19. Распутин Н.А., Яковлев С.В., Артемьев Г.А., Руси-нов П.Г., Нифантьев И.Э., Никонов И.Л., Коп-чук Д.С. // Журн. прикл. химии. 2021. Т. 94. № 6. С. 722–727. https://doi.org/10.31857/S0044461821060062
  20. 20. Yan Q., Tsutsumi K., Nomura K. // RSC Adv. 2017. V. 7. P. 41345–41358. https://doi.org/10.1039/c7ra07581b
  21. 21. Guo L., Dai S., Chen C. // Polymers. 2016. V. 8 № 2. Art. 37. https://doi.org/10.3390/polym8020037
  22. 22. Tran Q.H., Brookhart M., Daugulis O. // J. Am. Chem. Soc. 2020. V. 142. № 15. P. 7198–7206. https://doi.org/10.1021/jacs.0c02045
  23. 23. Kenyon P., Wörner M., Mecking S. // J. Am. Chem. Soc. 2018. V. 140. № 21. P. 6685–6689. https://doi.org/10.1021/jacs.8b03223
  24. 24. Dai S., Zhou S., Zhang W., Chen C. // Macromolecules. 2016. V. 49. № 23. P. 8855–8862. https://doi.org/10.1021/acs.macromol.6b02104
  25. 25. Dai S., Chen C. // Angew. Chem., Int. Ed. 2016. V. 55. № 42. P. 13281–13285. https://doi.org/10.1002/anie.201607152
  26. 26. Liang T., Goudari S.B., Chen C. // Nat. Commun. 2020. V. 11. Art. 372. https://doi.org/10.1038/s41467-019-14211-0
  27. 27. Antonov A.A., Sun W.-H., Bryliakov K.P. // Sci. China Chem. 2020. V. 63. № 6. P. 753–754. https://doi.org/10.1007/s11426-020-9708-3
  28. 28. Smith B.C. // Spectroscopy. 2021. V. 36. № 9. P. 24–29. https://doi.org/10.56530/spectroscopy.xp7081p7
  29. 29. Wunderlich B. Thermal Analysis. New York: Academic Press, 1990. 464 p.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library