- Код статьи
- 10.31857/S2686953522600507-1
- DOI
- 10.31857/S2686953522600507
- Тип публикации
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 511 / Номер выпуска 1
- Страницы
- 77-87
- Аннотация
- Представлена трехмерная (3D) компьютерная модель изобарной фазовой диаграммы системы ZrO2–SiO2–Al2O3 с образованием соединений ZrSiO4 и Al6Si2O13. Вывод ее геометрического строения проведен через последовательное построение схемы фазовых реакций, включая все полиморфные переходы в субсолидусе и перегруппировку взаимодействия бинарных соединений, а также оксидов циркония и алюминия, трансформацию ее в схему моно- и нонвариантных состояний в табличном и графическом (3D) виде, построение прототипа с переводом последнего в пространственную модель фазовой диаграммы реальной системы ZrO2–SiO2–Al2O3. Обсуждаются особенности изо- и политермических разрезов фазовой диаграммы рассматриваемой системы, рассчитанных с использованием термодинамической базы данных NUCLEA, по сравнению с полученной 3D-моделью.
- Ключевые слова
- фазовая диаграмма компьютерное моделирование оксид циркония оксид кремния оксид алюминия
- Дата публикации
- 18.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 2
Библиография
- 1. Claussen N., Jahn J. // J. Am. Ceram. Soc. 1980. V. 63. № 3–4. P. 228–229. https://doi.org/10.1111/j.1151-2916.1980.tb10700.x
- 2. Garvie R.C., Goss M.F., Marshall S., Urbani C. // Mater. Sci. Forum. 1988. V. 34–36. P. 681–688. https://doi.org/10.4028/www.scientific.net/msf.34-36.681
- 3. Frank M., Schweiger M., Rheinberger V., Höland W. // Glas. Ber. Glass Sci. Technol. 1998. V. 71. P. 345–348.
- 4. Höland W., Schweiger M., Frank M., Rheinberger V. // J. Biomed. Mater. Res. 2000. V. 53. № 4. P. 297–303. https://doi.org/10.1002/1097-4636 (2000)53:43.0.CO;2-G
- 5. Gregory A.G., Veasey T.J. // J. Mater. Sci. 1971. V. 6. № 10. P. 1312–1321. https://doi.org/10.1007/BF00552045
- 6. Sales M., Alarcon J. // J. Mater. Sci. 1995. V. 30. № 9. P. 2341–2347. https://doi.org/10.1007/BF01184584
- 7. McCoy M.A., Heuer A.H. // J. Am. Ceram. Soc. 1988. V. 71. № 8. P. 673–677. https://doi.org/10.1111/j.1151-2916.1988.tb06387.x
- 8. Awano M., Takagi H., Kuwahara Y. // J. Am. Ceram. Soc. 1992. V. 75. № 9. P. 2535–2540. https://doi.org/10.1111/j.1151-2916.1992.tb05608.x
- 9. Белов Г.В., Аристова Н.М. // Математическое моделирование. 2017. Т. 29. № 6. С. 135‒142. http://mi.mathnet.ru/rus/mm/v29/i6/p135
- 10. Ohnuma I., Ishida K. // Tecnol. Metal. Mater. Min. 2016. V. 13. № 1. P. 46‒63. https://doi.org/10.4322/2176-1523.1085
- 11. Bakardjieva S., Barrachin M., Bechta S., Bezdicka P., Bottomley D., Brissonneau L., Cheynet B., Dugne O., Fischer E., Fischer M., Gusarov V., Journeau C., Khabensky V., Kiselova M., Manara D., Piluso P., Sheindlin M., Tyrpekl V., Wiss T. // Ann. Nucl. Energ. 2014. V. 74. P. 110‒124. https://doi.org/10.1016/j.anucene.2014.06.023
- 12. Kitagaki T., Yano K., Ogino H., Washiya T. // J. Nucl. Mater. 2017. V. 486. P. 206‒215. https://doi.org/10.1016/j.jnucmat.2017.01.032
- 13. Björkvall J., Stolyarova V.L. // Rapid Commun. Mass Spectrom. 2001. V. 15. № 10. P. 836‒842. https://doi.org/10.1002/rcm.251
- 14. Bakardjieva S., Barrachin M., Bechta S., Bottomley D., Brissoneau L., Cheynet B., Fischer E., Journeau C., Kiselova M., Mezentseva L., Piluso P., Wiss T. // Progr. Nucl. Energ. 2010. V. 52. № 1. P. 84‒96. https://doi.org/10.1016/j.pnucene.2009.09.014
- 15. Kwon S.Y. Thermodynamic optimization of ZrO2-containing systems in the CaO–MgO–SiO2–Al2O3–ZrO2 system. Dissertation for the degree of Master of Engineering. Montreal, 2015. 113 p.
- 16. Lutsyk V.I., Vorob’eva V.P. // J. Therm. Anal. Calorim. 2010. V. 101. № 1. P. 25‒31. https://doi.org/10.1007/s10973-010-0855-0
- 17. Lutsyk V.I., Vorob’eva V.P. // Russ. J. Inorg. Chem. 2016. V. 61. № 2. P. 188‒207. https://doi.org/10.1134/S0036023616020121
- 18. Vorob'eva V.P., Zelenaya A.E., Lutsyk V.I., Sineva S.I., Starykh R.V., Novozhilova O.S. // J. Phase Equil. Diffus. 2021. V. 42. № 2. P. 175‒193. https://doi.org/10.1007/s11669-021-00863-3
- 19. Lutsyk I.V., Zelenaya A.E., Zyryanov A.M. // Materials, Methods & Technologies. International Scientific Publications. 2008. V. 2. № 1. P. 176‒184.
- 20. Lutsyk V.I., Vorob’eva V.P. // Russ. J. Phys. Chem. 2015. V. 89. № 10. P. 1715‒1722. https://doi.org/10.1134/S0036024415100192
- 21. Lutsyk V.I., Vorob’eva V.P., Shodorova S.Ya. // Russ. J. Inorg. Chem. 2016. V. 61. № 7. P. 858‒866. https://doi.org/10.1134/S0036023616070123
- 22. Vorob'eva V.P., Zelenaya A.E., Lutsyk V.I. // Russ. J. Inorg. Chem. 2021. V. 66. № 6. P. 894‒901. https://doi.org/10.1134/S003602362106022X
- 23. Vorob’eva V.P., Zelenaya A.E., Lutsyk V.I., Almjashev V.I., Vorozhtcov V.A., Stolyarova V.L. // Glass Phys. Chem. 2021. V. 47. № 6. P. 616‒621. https://doi.org/10.1134/S1087659621060328
- 24. Butterman W.C., Foster W.R. // Am. Mineral. 1967. V. 52. № 5–6. P. 880‒885. https://pubs.geoscienceworld.org/msa/ammin/article-abstract/52/5-6/880/542223/Zircon-Stability-and-the-Zr02-Si02-Phase-Diagram
- 25. Lakiza S.M., Lopato L.M. // J. Amer. Ceram. Soc. 1997. V. 80. № 4. P. 893‒902. https://doi.org/10.1111/j.1151-2916.1997.tb02919.x
- 26. Lakiza S., Fabrichnaya O., Wang Ch., Zinkevich M., Aldinger F. // J. Eur. Ceram. Soc. 2006. V. 26. № 3. P. 233‒246. https://doi.org/10.1016/j.jeurceramsoc.2004.11.011
- 27. Toropov N.A., Galakhov F.Ya. // Bull. Acad. Sci. USSR, Div. Chem. Sci. 1958. V. 7. № 1. P. 5‒9. https://doi.org/10.1007/BF01170853
- 28. Aramaki S., Roy R. // J. Am. Ceram. Soc. 1962. V. 45. № 5. P. 229‒242. https://doi.org/10.1111/j.1151-2916.1962.tb11133.x
- 29. de Noirfontaine M.-N., Tusseau-Nenez S., Girod-Labianca C., Pontikis V. // J. Mater. Sci. 2012. V. 47. № 3. P. 1471‒1479. https://doi.org/10.1007/s10853-011-5932-7
- 30. Яроцкая Е.Г., Федоров П.П. // Конденсированные среды и межфазные границы. 2018. Т. 20. № 4. С. 537–544. https://doi.org/10.17308/kcmf.2018.20/626
- 31. Lambotte G., Chartrand P. // J. Amer. Ceram. Soc. 2011. V. 94. № 11. P. 4000–4008. https://doi.org/10.1111/j.1551-2916.2011.04656.x
- 32. Igami Y., Ohi S., Miyake A. // J. Amer. Ceram. Soc. 2017. V. 100. № 10. P. 4928–4937. https://doi.org/10.1111/jace.15020
- 33. McMurdie H.F., Hall F.P. // J. Am. Ceram. Soc. 1949. V. 32. № s1. P. 154‒164. https://doi.org/10.1111/j.1151-2916.1949.tb19765.x
- 34. Toropov N.A., Galakhov F.Ya. // Bull. Acad. Sci. USSR, Div. Chem. Sci. 1956. V. 5. № 2. P. 153‒156. https://doi.org/10.1007/BF01177636
- 35. Kwon S.Y., Jung I.-H. // J. Eur. Ceram. Soc. 2017. V. 37. № 3. P. 1105‒1116. https://doi.org/10.1016/j.jeurceramsoc.2016.10.008
- 36. Будников П.П., Литваковский А.А. // ДАН СССР. 1956. Т. 106. № 2. С. 267‒270.
- 37. Greca M.C., Emiliano J.V., Segadães A.M. // J. Eur. Ceram. Soc. 1992. V. 9. № 4. P. 271‒283. https://doi.org/10.1016/0955-2219 (92)90062-I
- 38. Quereshi M.H., Brett N.H. // Trans. Brit. Ceram. Soc. 1968. V. 67. № 11. P. 569‒578.
- 39. Pena P., De Aza S. // J. Mater. Sci. 1984. V. 19. № 1. P. 135‒142. https://doi.org/10.1007/BF02403119
- 40. Pena P. // Bol. Soc. Esp. Ceram. Vidr. 1989. V. 28. № 2. P. 89‒96.
- 41. Connell R.G. // J. Phase Equilib. 1994. V. 15. № 1. P. 6‒19. https://doi.org/10.1007/BF02667677
- 42. Khaldoyanidi K.A. // J. Struct. Chem. 2003. V. 44. № 1. P. 116‒129. https://doi.org/10.1023/A:1024941216224
- 43. Халдояниди К.А. Фазовые диаграммы гетерогенных систем с трансформациями. Новосибирск: ИНХ СО РАН, 2004. 382 с.
- 44. Воробьева В.П. Фазовые диаграммы состояния трех- и четырехкомпонентных систем: от топологии к компьютерным моделям. Дис. … докт. ф.-м.н. Тюмень, 2012. 354 с.
- 45. Vorozhtcov V.A., Yurchenko D.A., Almjashev V.I., Sto-lyarova V.L. // Glass Phys. Chem. 2021. V. 47. № 5. P. 417‒426. https://doi.org/10.1134/S1087659621050175
- 46. NUCLEA: Thermodynamic database for nuclear applications [Электронный ресурс] // Доступно по: http://thermodata.online.fr/nuclea.html. Ссылка активна на 25.12.2022 г.
- 47. Mao H., Selleby M., Sundman B. // J. Am. Ceram. Soc. 2005. V. 88. № 9. P. 2544‒2551. https://doi.org/10.1111/j.1551-2916.2005.00440.x