- PII
- 10.31857/S2686953522600660-1
- DOI
- 10.31857/S2686953522600660
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 511 / Issue number 1
- Pages
- 68-76
- Abstract
- In this work, the parameters of catalyst synthesis by solution combustion method using oxalic acid as a reducing agent, were investigated. The catalysts activity in the process of obtaining hydrogen and carbon nanofibers by the catalytic decomposition of methane has been determined. The effectiveness of using this reagent for the preparation of a nickel catalyst (90% Ni/10% Al2O3) that does not require preliminary reduction with hydrogen was shown. Based on the regression analysis, it was found that among the catalyst synthesis parameters, the yields of carbon and hydrogen are most strongly influenced by temperature.
- Keywords
- разложение метана водород углеродные нановолокна горение раствора щавелевая кислота
- Date of publication
- 18.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 6
References
- 1. Kuvshinov D.G., Kurmashov P.B., Bannov A.G., Popov M.V., Kuvshinov G.G. // Int. J. Hydrogen Energy. 2019. V. 44. № 31. P. 16271–16286. https://doi.org/10.1016/j.ijhydene.2019.04.179
- 2. Shen Y., Lua A. // J. Power Sources. 2015. V. 280. P. 467–475. https://doi.org/10.1016/j.jpowsour.2015.01.057
- 3. Wang H.Y., Lua A.C. // Chem. Eng. J. 2015. V. 262. P. 1077–1089. https://doi.org/10.1016/J.CEJ.2014.10.063
- 4. Kenzhin R.M., Bauman Y.I., Volodin A.M., Mishakov I.V., Vedyagin A.A. // Appl. Surf. Sci. 2018. V. 427. P. 505–510. https://doi.org/10.1016/j.apsusc.2017.08.227
- 5. Muto T., Asahara M., Miyasaka T., Asato K., Uehara T., Koshi M. // Chem. Eng. Sci. 2023. V. 274. P. 117931. https://doi.org/10.1016/j.ces.2022.117931
- 6. Kurmashov P.B., Bannov A.G., Popov M.V., Kazakova A.A., Ukhina A.V., Kuvshinov G.G. // Russ. J. Appl. Chem. 2018. V. 91. № 11. P. 1874–1881. https://doi.org/10.1134/S1070427218110198
- 7. Kurmashov P.B., Bannov A.G., Popov M.V., Brester A.E., Ukhina A.V., Ishenko A.V., Maksimovskii E.A., Tolsto-brova L.I., Chulkov A.O., Kuvshinov G.G. // Int. J. Energy Res. 2022. V. 46. № 9. P. 11957–11971. https://doi.org/10.1002/er.7964
- 8. Kingsley J.J., Patil K.C. // Mater. Lett. 1988. V. 6. № 11–12. P. 427–432. https://doi.org/10.1016/0167-577X (88)90045-6
- 9. Prakash A.S., Khadar A.M.A., Patil K.C., Hegde M.S. // J. Mater. Synth. Process. 2002. V. 10. P. 135–141. https://doi.org/10.1023/A:1021986613158
- 10. Popov M.V., Bannov A.G // AIP Conf. Proc. 2022. V. 2390. № 1. P. 020060. https://doi.org/10.1063/5.0070001
- 11. Ermakova M.A., Ermakov D.Yu., Kuvshinov G.G., Plyasova L.M. // J. Catal. 1999. V. 187. № 1. P. 77–84. https://doi.org/10.1006/jcat.1999.2562
- 12. Kuvshinov G.G., Mogilnykh Yu.I., Kuvshinov D.G., Zaikovskii V.I., Avdeeva L.B. // Carbon. 1998. V. 36. № 1–2. P. 87–97. https://doi.org/10.1016/S0008-6223 (97)00131-0
- 13. Kuvshinov G.G., Popov M.V., Tonkodubov S.E., Kuvshinov G.G. // Russ. J. Appl. Chem. 2016. V. 89. № 11. P. 1777–1785. https://doi.org/10.1134/S1070427216110070
- 14. Krutskii Yu.L., Bannov A.G., Sokolov V.V., Dykova K.D., Shinkarev V.V., Ukhina A.V., Maksimovskii E.A., Pichugin A.Yu., Solov’ev E.A., Krutskaya T.M., Kuvshinov G.G. // Nanotechnol. Russia. 2013. V. 8. № 3–4. P. 3212–3217. https://doi.org/10.1134/S1995078013020109
- 15. Pichugin A.Yu., Maksimovskii E.A., Krutskaya T.M., Netskina O.V., Bataev I.A. // Ceram. Int. 2017. V. 43. № 3. P. 3212–3217. https://doi.org/10.1016/j.ceramint.2016.11.146
- 16. Brester A.E., Golovakhin V.V., Novgorodtseva O.N., Lapekin N.I., Shestakov A.A., Ukhina A.V., Prosanov I.Yu., Maksimovskii E.A., Popov M.V., Bannov A.G. // Dokl. Chem. 2021. V. 501. № 2. P. 264–269. https://doi.org/10.1134/S0012500821120016
- 17. Bannov A.G. Prášek J., Jašek O., Shibaev A.A., Zajíčková L. Gas sensing properties of carbon nanomaterials. In: Proc. of the 2016 39th International Spring Seminar on Electronics Technology (ISSE), Pilsen, Czech Republic, 18–22 May 2016. V. 2016. P. 449–451. https://doi.org/10.1109/ISSE.2016.7563238
- 18. Bannov A.G., Popov M.V., Brester A.E., Kurmashov P.B. // Micromachines. 2021. V. 12. № 2. P. 186. https://doi.org/10.3390/mi12020186
- 19. Shinkarev V.V., Glushenkov A.M., Kuvshinov G.G., Kuvshinov D.G. // Appl. Catal., B. 2009. V. 85. № 3–4. P. 180–191. https://doi.org/10.1016/j.apcatb.2008.07.011
- 20. Shinkarev V.V., Glushenkov A.M., Kuvshinov G.G., Kuvshinov D.G. // Carbon. 2010. V. 48. № 7. P. 2004–2012. https://doi.org/10.1016/j.carbon.2010.02.008
- 21. Bannov A.G., Uvarov N.F., Shilovskaya S.M., Kuvshi-nov G.G. // Nanotechnol. Russia. 2012. V. 7. № 3–4. P. 169–177. https://doi.org/10.1134/S1995078012020048
- 22. Dong Y., Ni Q., Li L., Fu Y. // Mater. Lett. 2014. V. 132. P. 206–209. https://doi.org/10.1016/j.matlet.2014.06.084
- 23. Li Y., Li D., Wang G. // Catal. Today. 2011. V. 162. № 1. P. 1–48. https://doi.org/10.1016/j.cattod.2010.12.042
- 24. Hadian M., Marrevee D.P.F., Buist K.A., Reesink B.H., Bos R., Bavel A.P., Kuipers H.A.M. // Chem. Eng. Sci. 2022. V. 260. № 22. P. 117938. https://doi.org/10.1016/j.ces.2022.117938
- 25. Roslyakov S.I., Kovalev D.Yu., Rogachev A.S., Manu-kyan H., Mukas’yan A.S. // Dokl. Phys. Chem. 2013. V. 449. № 1. P. 48–51. https://doi.org/10.1134/S0012501613030068
- 26. Kachala V.V., Khemchyan L.L., Kashin A.S., Orlov N.V., Grachev A.A., Zalesskiy S.S., Ananikov V.P. // Russ. Chem. Rev. 2013. V. 82. № 7. P. 648–685. https://doi.org/10.1070/rc2013v082n07abeh004413