- PII
- 10.31857/S2686953522600714-1
- DOI
- 10.31857/S2686953522600714
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 511 / Issue number 1
- Pages
- 88-94
- Abstract
- For the first time, the kinetics of the process of butyl lactate production by the interaction of ammonium lactate with n-butanol in the presence of water in the temperature range of 130–170°C in a closed system was studied as one of the stages of a new complex technology for the production of lactic acid and polylactide. The flow diagram of the process has been established. For the first time, a kinetic model of ammonium lactate esterification with n-butanol was proposed, considering the side formation of lactamide and the catalysis of esterification due to the acidity of lactic acid. The developed kinetic model can be used for mathematical modeling of the butyl lactate synthesis reactor.
- Keywords
- кинетика бутиллактат лактамид лактат аммония <i>н</i>‑бутанол молочная кислота этерификация
- Date of publication
- 18.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 5
References
- 1. Сакович Г.В., Скиба Е.А., Будаева В.В., Гладышева Е.К., Алешина Л.А. // Докл. АН. 2017. Т. 477. № 1. С. 109–112. https://doi.org/10.1134/S1607672917060047
- 2. Федотов А.С., Антонов Д.О., Уваров В.И., Корчак В.Н., Цодиков М.В., Моисеев И.И. // Докл. АН. 2014. Т. 459. № 4. С. 437. https://doi.org/10.7868/S0869565214340131
- 3. Shvets V., Kozlovskiy R., Kuznetsov A. // J. Clean. Prod. 2017. V. 155 P. 157–163. https://doi.org/10.1016/j.jclepro.2016.08.092
- 4. Meshalkin V.P., Dovì’ V.G., Bobkov V.I., Belyakov A.V., Butusov O.B., Garabadzhiu A.V., Burukhina T.F., Khodchenko S.M. // Mendeleev Commun. 2021. V. 31. № 5. P. 593–604. https://doi.org/10.1016/j.mencom.2021.09.003
- 5. Kumar R., Mahajani S.M. // Ind. Eng. Chem. Res. 2007. V. 46. № 21. P. 6873–6882. https://doi.org/10.1021/ie061274j
- 6. Garlotta D. // J. Polym. Environ. 2001. 9. № 2. P. 63–84. https://doi.org/10.1023/A:1020200822435
- 7. Vaidya A.N., Pandey R.A., Mudliar S., Suresh Kumar M., Chakrabarti T., Devotta S. // Crit. Rev. Environ. Sci. Technol. 2005. V. 35. № 5. P. 429–467. https://doi.org/10.1080/10643380590966181
- 8. Jamshidian M., Tehrany E.A., Imran M., Jacquot M., Desobry S. // Compr. Rev. Food Sci. Food Saf. 2010. V. 9. № 5. P. 552–571. https://doi.org/10.1111/j.1541-4337.2010.00126.x
- 9. Pang X., Zhuang X., Tang Z., Chen X. // Biotechnol. J. 2010. V. 5. № 11. P. 1125–1136. https://doi.org/10.1002/biot.201000135
- 10. Кузнецов А.Е., Козловский Р.А., Белодед А.В., Козловский И.А., Козловский М.Р., Кучеренко В.В., Насиров И.Р. // Химическая промышленность сегодня. 2022. № 3. С. 2–13. https://doi.org/10.53884/27132854_2022_3_2
- 11. Sin L.T., Rahmat A.R., Rahman W.A.W.A. Preface. In: Polylactic Acid. William Andrew Publishing, 2013. P. xi–xii. https://doi.org/10.1016/B978-1-4377-4459-0.00013-5
- 12. Wee Y.J., Kim J.N., Ryu H.W. // Food Technol. Biotechnol. 2006. V. 44. № 2. P. 163–172. https://hrcak.srce.hr/109834
- 13. Reddy C.A., Henderson H.E., Erdman M.D. // Appl. Environ. Microbiol. 1976. V. 32. № 6. P. 769–776. https://doi.org/10.1128/aem.32.6.769-776.1976
- 14. Bai D.M., Yan Zh.H., Wei Q., Zhao X.M., Li X.G., Xu Sh.M. // Biochem. Eng. J. 2004. V. 19. № 1. P. 47–51. https://doi.org/10.1016/j.bej.2003.10.002
- 15. Venus J. // Biotechnol. J. 2006. V. 1. № 12. P. 1428–1432. https://doi.org/10.1002/biot.200600180
- 16. Hetényi K., Németh Á., Sevella B. // Chem. Eng. Process. 2011. V. 50. № 3. P. 293–299. https://doi.org/10.1016/j.cep.2011.01.008