RAS PresidiumДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

4-AZIDO-3-AMINO-1,2,5-OXADIAZOLE: SYNTHESIS, STRUCTURAL CHARACTERIZATION AND PHYSICO-CHEMICAL PROPERTIES

PII
10.31857/S2686953522600787-1
DOI
10.31857/S2686953522600787
Publication type
Status
Published
Authors
Volume/ Edition
Volume 513 / Issue number 1
Pages
100-108
Abstract
The synthesis verification of 3-amino-4-azido-1,2,5-oxadiazole and its structural characterization (IR, NMR, X-Ray, elemental analysis) are reported. Its thermal behavior (TG-DSC), standard enthalpy of formation, sensitivity to mechanical stimuli, detonation parameters were studied. Our study unveils wide application perspectives of 3-amino-4-azidofurazan as a precursor to novel energetic materials for future insights and an eco-friendly primary explosive.
Keywords
1,2,5-оксадиазолы азиды ЯМР
Date of publication
18.09.2025
Year of publication
2025
Number of purchasers
0
Views
6

References

  1. 1. Batog L.V., Konstantinova L.S., Rozhkov V.Y., Strelenko Y.A., Lebedev O.V., Khmel’nitskii L.I. // Chem. Heterocycl. Compd. 2000. V. 36. № 1. P. 91–100. https://doi.org/10.1007/BF02256852
  2. 2. Batog L.V., Rozhkov V.Y., Strelenko Y.A., Lebedev O.V., Khmel’nitskii L.I. // Chem. Heterocycl. Compd. 2000. V. 36. № 3. P. 343–345. https://doi.org/10.1007/BF02256874
  3. 3. Khisamutdinov G.K., Mrakhutzina T.A., Gabdullin R.M., Abdrakhmanov I.S., Smirnov S.P., Ugrak B.I. // Russ. Chem. Bull. 1995. V. 44. № 7. P. 1269–1271. https://doi.org/10.1007/BF00700901
  4. 4. Zelenov V.P., Lobanova A.A., Lyukshenko N.I., Sysolyatin S.V., Kalashnikov A.I. // Russ. Chem. Bull. 2008. V. 57. № 7. P. 1384–1389. https://doi.org/10.1007/s11172-008-0180-y
  5. 5. Tselinskii I.V., Mel’nikova S.F., Vergizov S.N. // J. Org. Chem. USSR. 1981. V. 17. № 5. P. 994–995.
  6. 6. Sheremetev A.B., Lyalin B.V., Kozeev A.M., Palysaeva N.V., Struchkova M.I., Suponitsky K.Y. // RSC Advances. 2015. V. 5. № 47. P. 37617–37625. https://doi.org/10.1039/C5RA05726D
  7. 7. Churakov A.M., Ioffe S.L., Strelenko Y.A., Tartakovsky V.A. // Tetrahedron lett. 1996. V. 37. № 47. P. 8577–8580. https://doi.org/10.1016/0040-4039 (96)01992-2
  8. 8. Voronin A.A., Balabanova S.P., Fedyanin I.V., Churakov A.M., Pivkina A.N., Strelenko Yu. A., Klenov M.S., Tartakovsky V.A. // Molecules. 2022. V. 27. № 19. P. 6287. https://doi.org/10.3390/molecules27196287
  9. 9. Churakov A.M., Ioffe S.L., Kuz’min V.S., Strelenko Y.A., Struchkov Yu.T., Tartakovskii V.A. // Chem. Heterocycl. Compd. 1988. V. 24. № 12. P. 1378–1381. https://doi.org/10.1007/BF00486683
  10. 10. Sheremetev A.B., Palysaeva N.V., Struchkova M.I., Suponitsky K.Y. // Mendeleev Commun. 2012. V. 22. № 6. P. 302–304. https://doi.org/10.1016/j.mencom.2012.11.007
  11. 11. Sinditskii V.P., Burzhava A.V., Usuntsinova A.V., Egorshev V.Y., Palysaeva N.V., Suponitsky K.Y., Ananiev I.V., Sheremetev A.B. // Combust. Flame. 2020. V. 213. P. 343–356. https://doi.org/10.1016/j.combustflame.2019.12.006
  12. 12. Strizhenko K.V., Smirnova A.D., Filatov S.A., Sindi-tskii V.P., Stash, A.I., Suponitsky K.Y., Monogarov K.A., Kiselev V.G., Sheremetev A.B. // Molecules. 2022. V. 27. 8443. https://doi.org/10.3390/molecules27238443
  13. 13. Gunasekaran A., Trudell M.L., Boyer J.H. // Heteroat. Chem. 1994. V. 5. № 5–6. P. 441–446. https://doi.org/10.1002/hc.520050505
  14. 14. Rakitin O.A., Zalesova O.A., Kulikov A.S., Makhova N.N., Godovikova T.I., Khmel’nitskii L.I. // Russ. Chem. Bull. 1993. V. 42. № 11. P. 1865–1870. https://doi.org/10.1007/BF00699005
  15. 15. Fierz-David H.E., Blangey L., Vittum P. Fundamental processes of dye chemistry. Interscience Publishers Ltd., London, 1949. P. 247.
  16. 16. Tselinskii I.V., Mel’nikova S.F., Vergizov S.N. // Chem. Heterocycl. Compds. 1981. V. 17. № 3. P. 228–232. https://doi.org/10.1007/BF00505982
  17. 17. Trifonov R.E., Gaenko A.V., Vergizov S.N., Shcherbi-nin M.B., Ostrovskii V.A. // Croat. Chem. Acta. 2003. V. 76. № 2. P. 177–182.
  18. 18. Bader R.F.W., Larouche A., Gatti C., Carroll M.T., MacDougall P.J., Wiberg K.B. // J. Chem. Phys. 1987. V. 87. № 2. P. 1142–1152. https://doi.org/10.1063/1.453294
  19. 19. Smith C.J., Smith C.D., Nikbin N., Ley S.V., Baxen-dale I.R. // Org. Biomol. Chem. 2011. V. 9. № 6. P. 1927–1937. https://doi.org/10.1039/C0OB00813C
  20. 20. Groom C.R., Bruno I.J., Lightfoot M.P., Ward S.C. // Acta Cryst. 2016. V. B72. № 2. P. 171–179. https://doi.org/10.1107/S2052520616003954
  21. 21. Bruno I.J., Cole J.C., Kessler M., Luo J., Motherwell W.D.S., Purkis L.H., Smith B.R., Taylor R., Cooper R.I., Har-ris S.E., Orpen A.G. // J. Chem. Inf. Comput. Sci. 2004. V. 44. № 6. P. 2133–2144. https://doi.org/10.1021/ci049780b
  22. 22. Muravyev N.V., Monogarov K.A., Melnikov I.N., Pivki-na A.N., Kiselev V.G. // Phys. Chem. Chem. Phys. 2021. V. 23. № 29. P. 15522–15542. https://doi.org/10.1039/D1CP02201F
  23. 23. Gorn M.V., Monogarov K.A., Dalinger I.L., Melnikov I.N., Kiselev V.G., Muravyev N.V. // Thermochim. Acta. 2020. V. 690. P. 178697. https://doi.org/10.1016/j.tca.2020.178697
  24. 24. Muravyev N.V., Meerov D.B., Monogarov K.A., Melni-kov I.N., Kosareva E.K., Fershtat L.L., Sheremetev A.B., Dalinger I.L., Fomenkov I.V., Pivkina A.N. // Chem. Eng. J. 2021. V. 421. P. 129804. https://doi.org/10.1016/j.cej.2021.129804
  25. 25. Matyáš R., Pachman J. Primary explosives. Springer Berlin, Heidelberg, 2013. 338 p. https://doi.org/10.1007/978-3-642-28436-6
  26. 26. Muravyev N.V., Wozniak D., Piercey D. // J. Mater. Chem. A. 2022. V 10. № 20. P. 11054–11073. https://doi.org/10.1039/D2TA01339H
  27. 27. Zhang J., Shreeve J.N. // J. Am. Chem. Soc. 2014. V. 136. № 11. P. 4437–4445. https://doi.org/10.1021/ja501176q
  28. 28. Joo Y.H., Jean’ne M.S. // Chem. Commun. 2010. V 46. № 1. P. 142–144.
  29. 29. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. V. 71. № 1. P. 3–8. https://doi.org/10.1107/S2053273314026370
  30. 30. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3–8. https://doi.org/10.1107/S2053229614024218
  31. 31. Hansen N.K., Coppens P. // Acta Cryst. 1978. V. A34. № 6. P. 909–921. https://doi.org/10.1107/S0567739478001886
  32. 32. Koritsanszky T., Macchi P., Gatti C., Farrugia L.J., Mallinson P.R., Volkov A., Richter T. // XD2006 – A Computer program package for multipole refinement, topological analysis of charge densities and evaluation of intermolecular energies from experimental and theoretical structure factors. 2006.
  33. 33. Coelho A.A. // J. Appl. Crystallogr. 2018. V. 51. № 1. P. 210–218. https://doi.org/10.1107/S1600576718000183
  34. 34. Peintinger M.F., Oliveira D.V., Bredow T. // J. Comput. Chem. 2013. V. 34. № 6. P. 451–459. https://doi.org/10.1002/jcc.23153
  35. 35. Dovesi R., Erba A., Orlando R., Zicovich-Wilson C.M., Civalleri B., Maschio L. // WIREs Comput. Mol. Sci. 2018. V. 8. № 4. P. 1360. https://doi.org/10.1002/wcms.1360
  36. 36. Boys S.F., Bernardi F. // Mol. Phys. 1970. V. 19. № 4. P. 553–566. https://doi.org/10.1080/00268977000101561
  37. 37. Gatti C., Saunders V.R., Roetti C. // J. Chem. Phys. 1994. V. 101. № 12. P. 10686. https://doi.org/10.1063/1.467882
  38. 38. STANAG 4489, Explosives, Impact Sensitivity Tests, NATO, Brussels, 1999.
  39. 39. STANAG 4487, Explosives, Friction Sensitivity Tests, NATO, Brussels, 2002.
  40. 40. Inozemtsev Ya.O., Vorobjov A.B., Inozemtsev A.V., Ma-tyushin Yu.N. // Gorenie i vzryv. 2014. V. 7. P. 260–270. (in Russian)
  41. 41. Kon’kova T.S., Matyushin Yu.N., Miroshnichenko E.A., Vorob’ev A.B. // Russ. Chem. Bull. 2009. V. 58. P. 2020–2027. https://doi.org/10.1007/s11172-009-0276-z
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library