Президиум РАНДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

Синтез полифункционального дендрона на основе галловой кислоты с использованием реакции азид-алкинового циклоприсоединения

Код статьи
10.31857/S2686953522600830-1
DOI
10.31857/S2686953522600830
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 513 / Номер выпуска 1
Страницы
11-17
Аннотация
Постадийной модификацией галловой кислоты реакцией азид-алкинового циклоприсоединения впервые получен триазол-содержащий дендрон первого поколения, содержащий гидроксипропилтриазольные группы и тетраэтиленгликолевый линкер. Структура всех промежуточных соединений доказана современными физическими методами исследования. Установлено, что при использовании бромметилен-производных галловой кислоты в синтезе триазол-содержащих дендронов из-за высокой подвижности атома брома в бензильном положении образуются побочные продукты алкилирования используемых в реакции оснований (триэтиламина и диизопропилэтиламина).
Ключевые слова
дендримеры галловая кислота клик-химия
Дата публикации
18.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
2

Библиография

  1. 1. Antipin I.S., Alfimov M.V., Arslanov V.V., Burilov V.A., Vatsadze S.Z., Voloshin Y.Z., Volcho K.P., Gorbatchuk V.V., Gorbunova Y.G., Gromov S.P., Dudkin S.V., Zaitsev S.Y., Zakharova L.Y., Ziganshin M.A., Zolotukhina A.V., Kalinina M.A., Karakhanov E.A., Kashapov R.R., Koifman O.I., Konovalov A.I., Korenev V.S., Maksimov A.L., Mamardashvili N.Z., Mamardashvili G.M., Martynov A.G., Mustafina A.R., Nugmanov R.I., Ovsyannikov A.S., Padnya P.L., Potapov A.S., Selektor S.L., Sokolov M.N., Solovieva S.E., Stoikov I.I., Stuzhin P.A., Suslov E.V., Ushakov E.N., Fedin V.P., Fedorenko S.V., Fedorova O.A., Fedorov Y.V., Chvalun S.N., Tsivadze A.Y., Shtykov S.N., Shurpik D.N., Shcherbina M.A., Yakimova L.S. // Russ. Chem. Rev. 2021. V. 90. № 8. P. 895–1101. https://doi.org/10.1070/RCR5011
  2. 2. Arzhakova O.V., Arzhakov M.S., Badamshina E.R., Bryuzgina E.B., Bryuzgin E.V., Bystrova A.V., Vaga-nov G.V., Vasilevskaya V.V., Vdovichenko A.Yu., Gallya-mov M.O., Gumerov R.A., Didenko A.L., Zefirov V.V., Karpov S.V., Komarov P.V., Kulichikhin V.G., Kuroch-kin S.A., Larin S.V., Malkin A.Ya., Milenin S.A., Muzafarov A.M., Molchanov V.S., Navrotskiy A.V., Novakov I.A., Panarin E.F., Panova I.G., Potemkin I.I., Svetlichny V.M., Sedush N.G., Serenko O.A., Uspenskii S.A., Philippova O.E., Khokhlov A.R., Chvalun S.N., Sheiko S.S., Shibaev A.V., Elmanovich I.V., Yudin V.E., Yakimansky A.V., Yaroslavov A.A. // Russ. Chem. Rev. 2022. V. 91. P. 12. https://doi.org/10.57634/RCR5062
  3. 3. Yamamoto K., Imaoka T., Tanabe M., Kambe T. // Chem. Rev. 2019. V. 120. № 2. P. 1397–1437. https://doi.org/10.1021/acs.chemrev.9b00188
  4. 4. Newkome G.R., Yao Z.Q., Baker G.R., Gupta V.K. // J. Org. Chem. 1985. V. 50. № 11. P. 2003–2004. https://doi.org/10.1021/jo00211a052
  5. 5. Miller T.M., Neenan T.X. // Chem. Mater. 1990. V. 2. № 4. P. 346–349. https://doi.org/10.1021/cm00010a006
  6. 6. Kolb H.C., Finn M.G., Sharpless K.B. // Angew. Chem., Int. Ed. 2001. V. 40. № 11. P. 2004–2021. https://doi.org/10.1002/1521-3773 (20010601)40:11< 2004::AID-ANIE2004>3.0.CO;2-5
  7. 7. Meldal M., Tornøe C.W. // Chem. Rev. 2008. V. 108. № 8. P. 2952–3015. https://doi.org/10.1021/cr0783479
  8. 8. Parshad B., Yadav P., Kerkhoff Y., Mittal A., Achazi K., Haag R., Sharma S.K. // New J. Chem. 2019. V. 43. № 30. P. 11984–11993. https://doi.org/10.1039/C9NJ02612F
  9. 9. Wu P., Feldman A.K., Nugent A.K., Hawker C.J., Scheel A., Voit B., Pyun J., Fréchet J.M.J., Sharpless K.B., Fokin  V.V. // Angew. Chem. 2004. V. 116. № 30. P. 4018–4022. https://doi.org/10.1002/ange.200454078
  10. 10. Arseneault M., Levesque I., Morin J.F. // Macromolecules. 2012. V. 45. № 9. P. 3687–3694. https://doi.org/10.1021/ma300648r
  11. 11. Agrahari A.K., Singh A.S., Mukherjee R., Tiwari V.K. // RSC Adv. 2020. V. 10. № 52. P. 31553–31562. https://doi.org/10.1039/D0RA05289B
  12. 12. Qin T., Li X., Chen J., Zeng Y., Yu T., Yang G., Li Y. // Chem. Asian J. 2014. V. 9. № 12. P. 3641–3649. https://doi.org/10.1002/asia.201402960
  13. 13. Mu S., Liu W., Ling Q., Liu X., Gu H. // Appl. Organomet. Chem. 2019. V. 33. № 6. P. e4908. https://doi.org/10.1002/aoc.4908
  14. 14. Camponovo J., Ruiz J., Cloutet E., Astruc D. // Chem. Eur. J. 2009. V. 15. № 12. P. 2990–3002. https://doi.org/10.1002/chem.200801999
  15. 15. Liu Y., Liu G.X., Zhang W., Du C., Wesdemiotis C., Cheng S.Z.D. // Macromolecules. 2019. V. 52. № 11. P. 4341–4348. https://doi.org/10.1021/acs.macromol.9b00549
  16. 16. Palmans A.R.A., Vekemans J.A.J.M., Fischer H., Hik-met R.A., Meijer E.W. // Chem. Eur. J. 1997. V. 3. № 2. P. 300–307. https://doi.org/10.1002/chem.19970030220
  17. 17. Armarego W.L.F. Purification of laboratory chemicals. 8th ed. Elsevier, Butterworth-Heinemann, 2017.
  18. 18. Wijtmans M., de Graaf C., de Kloe G., Istyastono E.P., Smit J., Lim H., Boonnak R., Nijmeijer S., Smits R.A., Jongejan A., Zuiderveld O., de Esch I.J.P., Leurs R. // J. Med. Chem. 2011. V. 54. № 6. P. 1693–1703. https://doi.org/10.1021/jm1013488
  19. 19. Chen H., Hou S., Tan Y. // Supramol. Chem. 2016. V. 28. № 9–10. P. 801–809. https://doi.org/10.1080/10610278.2016.1142089
  20. 20. Heller P., Mohr N., Birke A., Weber B., Reske-Kunz A., Bros M., Barz M. // Macromol. Biosci. 2015. V. 15. № 1. P. 63–73. https://doi.org/10.1002/mabi.201400417
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека