RAS PresidiumДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

NONEQUILIBRIUM NUCLEAR SPIN STATES OF ETHYLENE DURING ACETYLENE HYDROGENATION WITH PARAHYDROGEN OVER IMMOBILIZED IRIDIUM COMPLEXES

PII
10.31857/S2686953522600933-1
DOI
10.31857/S2686953522600933
Publication type
Status
Published
Authors
Volume/ Edition
Volume 512 / Issue number 1
Pages
120-129
Abstract
In this work rhodium and iridium immobilized complexes were prepared and characterized by X-ray photoelectron spectroscopy. For the first time, hyperpolarized 13C-ethylene was detected directly in the gas phase during acetylene hydrogenation with parahydrogen on immobilized iridium complexes. The line shape of polarized 13С‑ethylene unambiguously indicates that the hydrogen addition to the triple bond of acetylene on immobilized iridium complexes proceeds via syn-addition. It has been shown that the selective acetylene hydrogenation with parahydrogen over immobilized iridium complexes is an effective chemical method for enriching the nuclear spin isomers of ethylene.
Keywords
гиперполяризация параводород индуцированная параводородом поляризация ядер ЯМР гетерогенный катализ иммобилизованные комплексы РФЭС селективное гидрирование этилен
Date of publication
18.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Bos A.N.R., Westerterp K.R. // Chem. Eng. Process. Process Intensif. 1993. V. 32. P. 1–7. https://doi.org/10.1016/0255-2701 (93)87001-B
  2. 2. Zhivonitko V.V., Kovtunov K.V., Chapovsky P.L., Kop-tyug I.V. // Angew. Chem. Int. Ed. 2013. V. 52. P. 13251–13255. https://doi.org/10.1002/anie.201307389
  3. 3. Chapovsky P.L., Zhivonitko V.V., Koptyug I.V. // J. Phys. Chem. A. 2013. V. 117. P. 9673–9683. https://doi.org/10.1021/jp312322f
  4. 4. Гельмуханов Ф.Х., Шалагин А.М. // Письма в ЖЭТФ. 1979. V. 29. P. 773–776.
  5. 5. Sun Z.-D., Takagi K., Matsushima F. // Science. 2005. V. 310. P. 1938–1941. https://doi.org/10.1126/science.1120037
  6. 6. Eills J., Budker D., Cavagnero S., Chekmenev E.Y., Elliott S.J., Jannin S., Lesage A., Matysik J., Meersmann T., Prisner T., Reimer J.A., Yang H., Koptyug I.V. // Chem. Rev. 2023. V. 123. P. 1417–1551. https://doi.org/10.1021/acs.chemrev.2c00534
  7. 7. Ковтунов К.В., Буруева Д.Б., Свиязов С.В., Сальников О.Г., Гудсон Б.М., Чекменев Э.Ю., Коптюг И.В. // Изв. АН. Сер. Хим. 2021. V. 12. P. 2382–2389.
  8. 8. Покочуева Е.В., Святова А.И., Буруева Д.Б., Коптюг И.В. // Изв. АН. Сер. Хим. 2023. V. 1. P. 1–19.
  9. 9. Duckett S.B., Mewis R.E. // Acc. Chem. Res. 2012. V. 45 P. 1247–1257. https://doi.org/10.1021/ar2003094
  10. 10. Koptyug I.V., Kovtunov K.V., Burt S.R., Anwar M.S., Hilty C., Han S.-I., Pines A., Sagdeev R.Z. // J. Am. Chem. Soc. 2007. V. 129. P. 5580–5586. https://doi.org/10.1021/ja068653o
  11. 11. Kovtunov K.V., Beck I.E., Bukhtiyarov V.I., Koptyug I.V. // Angew. Chem. Int. Ed. 2008. V. 47. P. 1492–1495. https://doi.org/10.1002/anie.200704881
  12. 12. Kovtunov K.V., Zhivonitko V.V., Skovpin I.V., Barskiy D.A., Koptyug I.V. // Top. Curr. Chem. 2013. V. 338. P. 123–180. https://doi.org/10.1007/128_2012_371
  13. 13. Pokochueva E.V., Burueva D.B., Kovtunova L.M., Bukhtiyarov A.V., Gladky A.Yu., Kovtunov K.V., Koptyug I.V., Bukhtiyarov V.I. // Faraday Discuss. 2021. V. 229. P. 161–175. https://doi.org/10.1039/C9FD00138G
  14. 14. Burueva D.B., Kovtunov K.V., Bukhtiyarov A.V., Barskiy D.A., Prosvirin I.P., Mashkovsky I.S., Baeva G.N., Bukhtiyarov V.I., Stakheev A.Yu., Koptyug I.V. // Chem. Eur. J. 2018. V. 24. P. 2547–2553. https://doi.org/10.1002/chem.201705644
  15. 15. Zhao E.W., Maligal-Ganesh R., Xiao C., Goh T.-W., Qi Z., Pei Y., Hagelin-Weaver H.E., Huang W., Bowers C.R. // Angew. Chem. Int. Ed. 2017. V. 56. P. 3925–3929. https://doi.org/10.1002/anie.201701314
  16. 16. Corma A., Salnikov O.G., Barskiy D.A., Kovtunov K.V., Koptyug I.V. // Chem. Eur. J. 2015. V. 21. P. 7012–7015. https://doi.org/10.1002/chem.201406664
  17. 17. Skovpin I.V., Zhivonitko V.V., Koptyug I.V. // Appl. Magn. Reson. 2011. V. 41. P. 393–410. https://doi.org/10.1007/s00723-011-0255-z
  18. 18. Skovpin I.V., Zhivonitko V.V., Kaptein R., Koptyug I.V. // Appl. Magn. Reson. 2013. V. 44. P. 289–300. https://doi.org/10.1007/s00723-012-0419-5
  19. 19. Skovpin I.V., Zhivonitko V.V., Prosvirin I.P., Khabibulin D.F., Koptyug I.V. // Z. Phys. Chem. 2017. V. 231. P. 575–592. https://doi.org/10.1515/zpch-2016-0824
  20. 20. Skovpin I.V., Kovtunova L.M., Nartova A.V., Kvon R.I., Bukhtiyarov V.I., Koptyug I.V. // Catal. Sci. Technol. 2022. V. 12. P. 3247–3253. https://doi.org/10.1039/D1CY02258J
  21. 21. Crabtree R.H., Morris G.E. // J. Organomet. Chem. 1977. V. 135. P. 395–403. https://doi.org/10.1016/S0022-328X (00)88091-2
  22. 22. Yamada T., Matsuo T., Ogawa A., Ichikawa T., Kobayashi Y., Masuda H., Miyamoto R., Bai H., Meguro K., Sawama Y., Monguchi Y., Sajiki H. // Org. Process Res. Dev. 2018. V. 23. P. 462–469. https://doi.org/10.1021/acs.oprd.8b00291
  23. 23. Huang L., Ang T.P., Wang Z., Tan J., Chen J., Wong P.K. // Inorg. Chem. 2011. V. 50. P. 2094–2111. https://doi.org/10.1021/ic100824e
  24. 24. Crudden C.M., Sateesh M., Lewis R. // J. Am. Chem. Soc. 2005. V. 127. P. 10045–10050. https://doi.org/10.1021/ja0430954
  25. 25. Holsboer F., Beck W., Bartunik H.D. // J. Chem. Soc., Dalt. Trans. 1973. P. 1828–1829. https://doi.org/10.1039/DT9730001828
  26. 26. Fernando N.K., Cairns A.B., Murray C.A., Thompson A.L., Dickerson J.L., Garman E.F., Ahmed N., Ratcliff L.E., Regoutz A. // J. Phys. Chem. A. 2021. V. 125. P. 7473–7488. https://doi.org/10.1021/acs.jpca.1c05759
  27. 27. Bowers C.R., Weitekamp D.P. // J. Am. Chem. Soc. 1987. V. 109. P. 5541–5542. https://doi.org/10.1021/ja00252a049
  28. 28. Salnikov O.G., Kovtunov K.V., Barskiy D.A., Khudorozhkov A.K., Inozemtseva E.A., Prosvirin I.P., Bukhtiya-rov V.I., Koptyug I.V. // ACS Catal. 2014. V. 4. P. 2022–2028. https://doi.org/10.1021/cs500426a
  29. 29. Giordano G., Crabtree R.H., Heintz R.M., Forster D., Morris D.E. Di-μ-chloro-bis(η4-1,5-cyclooctadlene) dirhodium (I). In: Inorganic syntheses. V. 19. Shri-ver D.F. (Ed.). John Wiley & Sons, 1979. P. 218–220. https://doi.org/10.1002/9780470132500.ch50
  30. 30. Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D. Handbook of X-ray photoelectron spectroscopy. 2nd edn. Perkin-Elmer Corp., Eden Priarie, MN, USA, 1992.
  31. 31. XPSPEAK, свободно распространяемое программное обеспечение для анализа спектров РФЭС // http://xpspeak.software.informer.com/4.1/ (ссылка активна на 27.12.2022).
  32. 32. Квон Р.И., Нартова АВ., Ковтунова Л.М., Бухтияров В.И. // Журн. структ. хим. 2023. V. 64. P. 106142. https://doi.org/10.26902/JSC_id106142
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library