Президиум РАНДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

Квантование электрической проводимости в слоистых мемристорных структурах Zr/ZrO2/Au

Код статьи
10.31857/S2686953523600034-1
DOI
10.31857/S2686953523600034
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 513 / Номер выпуска 1
Страницы
119-124
Аннотация
Нанотрубки диоксида циркония, синтезируемые методом анодирования, являются перспективной функциональной средой для формирования ячеек энергонезависимой резистивной памяти. В работе исследованы вольт-амперные характеристики в области низкой проводимости созданных мемристорных структур Zr/ZrO2 /Au. Впервые проанализированы обратимые механизмы формирования/разрушения единичных квантовых проводников на основе кислородных вакансий, с участием которых протекают процессы многократного резистивного переключения между низкоомным и высокоомным состояниями в нанотубулярном диоксидном слое. Предложена и обсуждается эквивалентная электрическая схема параллельного резисторного соединения, которая позволяет описывать наблюдаемое мемристивное поведение полученных слоистых структур.
Ключевые слова
нанотубулярные диоксиды металлов нанотрубки диоксида циркония мемристоры мемристивное поведение квантование проводимости
Дата публикации
18.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
2

Библиография

  1. 1. Yoo H., Kim M., Kim Y.-T., Lee K., Choi J. // Catalysts. 2018. V. 8. 555. https://doi.org/10.3390/catal8110555
  2. 2. Park J., Cimpean A., Tesler A.B., Mazare A. // Nanomaterials. 2021. V. 11. 2359. https://doi.org/10.3390/nano11092359
  3. 3. Bashirom N., Kian T.W., Kawamura G., Matsuda A., Razak K.A., Lockman Z. // Nanotechnology. 2018. V. 29. 375701. https://doi.org/10.1088/1361-6528/aaccbd
  4. 4. Huai X., Girardi L., Lu R., Gao S., Zhao Y., Ling Y., Rizzi G.A., Granozzi G., Zhang Z. // Nano Energy. 2019. V. 65. 104020. https://doi.org/10.1016/ j.nanoen.2019.104020
  5. 5. Ремпель А.А., Валеева А.А., Вохминцев А.С., Вайнштейн И.А. // Усп. хим. 2021. Т. 90. № 11. С. 1397–1414. https://doi.org/10.1070/RCR4991
  6. 6. Hazra A., Jan A., Tripathi A., Kundu S., Boppidi P.K.R., Gangopadhyay S. // IEEE Trans. Electron Devices. 2020. V. 67. P. 2197–2204. https://doi.org/10.1109/TED.2020.2983755
  7. 7. Vokhmintsev A., Petrenyov I., Kamalov R., Weinstein I. // Nanotechnology. 2022. V. 33. 075208. https://doi.org/10.1088/1361-6528/ac2e22
  8. 8. Yakushev A.A., Abel A.S., Averin A.D., Beletskaya I.P., Cheprakov A.V., Ziankou I.S., Bonneviot L., Bessmertnykh-Lemeune A. // Coord. Chem. Rev. 2022. V. 458. 214331. https://doi.org/10.1016/j.ccr.2021.214331
  9. 9. Beletskaya I.P., Ananikov V.P. // Chem. Rev. 2011. V. 111. P. 1596–1636. https://doi.org/10.1021/cr100347k
  10. 10. Yoo J., Lee K., Tighineanu A., Schmuki P. // Electrochem. Comm. 2013. V. 34. P. 177–180. https://doi.org/10.1016/j.elecom.2013.05.038
  11. 11. Вохминцев А.С., Вайнштейн И.А., Камалов Р.В., Дорошева И.Б. // Изв. РАН. Сер. Физ. 2014. Т. 78. № 9. С. 1176–1179. https://doi.org/10.7868/S0367676514090312
  12. 12. Du G., Li H., Mao Q., Ji Z. // J. Phys. D: Appl. Phys. 2016. V. 49. 445105. https://doi.org/10.1088/0022-3727/49/44/445105
  13. 13. Gao S., Zeng F., Chen C., Tang G., Lin Y., Zheng Z., Song C., Pan F. // Nanotechnol. 2013. V. 24. 335201. https://doi.org/10.1088/0957-4484/24/33/335201
  14. 14. Milano G., Aono M., Boarino L., Celano U., Hasegawa T., Kozicki M., Majumdar S., Menghini M., Miranda E., Ricciardi C., Tappertzhofen S., Terabe K., Valov I. // Adv. Mater. 2022. V. 34 № 32. 2201248. https://doi.org/10.1002/adma.202201248
  15. 15. Xue W., Gao S., Shang J., Yi X., Liu G., Li R.-W. // Adv. Electron. Mater. 2019. V. 5 № 9. 1800854. https://doi.org/10.1002/aelm.201800854
  16. 16. Kuzmenko A.B., van Heumen E., Carbone F., van der Marel D. // Phys. Rev. Lett. 2008. V. 100. 117401. https://doi.org/10.1103/PhysRevLett.100.117401
  17. 17. Вохминцев А.С., Камалов Р.В., Петренев И.А., Вайнштейн И.А. Способ получения нанотрубок диоксида циркония с квантовыми проводниками. Патент РФ 2758998. 2021.
  18. 18. Carlos E., Branquinho R., Martins R., Kiazadeh A., Fortunato E. // Adv. Mater. 2021. V. 33. 2004328. https://doi.org/10.1002/adma.202004328
  19. 19. Waser R., Dittmann R., Staikov G., Szot K. // Adv. Mater. 2009. V. 21. P. 2632–2663. https://doi.org/10.1002/adma.200900375
  20. 20. Petrenyov I.A., Kamalov R.V., Vokhmintsev A.S., Martemyanov N.A., Weinstein I.A. // J. Phys. Conf. Ser. 2018. V. 1124. 022004. https://doi.org/10.1088/1742-6596/1124/2/022004
  21. 21. Gryaznov A.O., Dorosheva I.B., Vokhmintsev A.S., Kamalov R.V., Weinstein I.A. Automatized complex for measuring the electrical properties of MIM structures // 2016 International Siberian Conference on Control and Communications (SIBCON), Moscow, Russia, 12–14 May, 2016. 7491772. https://doi.org/10.1109/SIBCON.2016.7491772
  22. 22. Chen C.-C., Say W.C., Hsieh S.-J., Diau E.W.-G. // Appl. Phys. A. 2009. V. 95. P. 889–898. https://doi.org/10.1007/s00339-009-5093-6
  23. 23. Zhao S., Xue J., Wang Y., Yan S. // J. Appl. Phys. 2012. V. 111. 043514. https://doi.org/10.1063/1.3682766
  24. 24. Lyons J.L., Janotti A., Van de Walle C.G. // Microelectron. Eng. 2011. V. 88. P. 1452–1456. https://doi.org/10.1016/j.mee.2011.03.099
  25. 25. Vokhmintsev A.S., Petrenyov I.A., Kamalov R.V., Karabanalov M.S., Weinstein I.A. // J. Lumin. 2022. V. 252. 119412. https://doi.org/10.1016/ j.jlumin.2022.119412
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека