RAS PresidiumДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

QUANTIZATION OF ELECTRICAL CONDUCTANCE IN LAYERED Zr/ZrO2/Au MEMRISTIVE STRUCTURES

PII
10.31857/S2686953523600034-1
DOI
10.31857/S2686953523600034
Publication type
Status
Published
Authors
Volume/ Edition
Volume 513 / Issue number 1
Pages
119-124
Abstract
Anodic zirconia nanotubes are a promising functional medium for the formation of non-volatile resistive memory cells. The current-voltage characteristics in the region of low conductivity of the fabricated Zr/ZrO2/Au memristor structures have been studied in this work. For the first time, the reversible mechanisms of formation/destruction of single quantum conductors based on oxygen vacancies, which participate in processes of multiple resistive switching between low- and high-resistance states in a nanotubular dioxide layer, have been analyzed. An equivalent electrical circuit of a parallel resistor connection have been proposed and discussed to describe the observed memristive behavior of the studied layered structures.
Keywords
нанотубулярные диоксиды металлов нанотрубки диоксида циркония мемристоры мемристивное поведение квантование проводимости
Date of publication
18.09.2025
Year of publication
2025
Number of purchasers
0
Views
5

References

  1. 1. Yoo H., Kim M., Kim Y.-T., Lee K., Choi J. // Catalysts. 2018. V. 8. 555. https://doi.org/10.3390/catal8110555
  2. 2. Park J., Cimpean A., Tesler A.B., Mazare A. // Nanomaterials. 2021. V. 11. 2359. https://doi.org/10.3390/nano11092359
  3. 3. Bashirom N., Kian T.W., Kawamura G., Matsuda A., Razak K.A., Lockman Z. // Nanotechnology. 2018. V. 29. 375701. https://doi.org/10.1088/1361-6528/aaccbd
  4. 4. Huai X., Girardi L., Lu R., Gao S., Zhao Y., Ling Y., Rizzi G.A., Granozzi G., Zhang Z. // Nano Energy. 2019. V. 65. 104020. https://doi.org/10.1016/ j.nanoen.2019.104020
  5. 5. Ремпель А.А., Валеева А.А., Вохминцев А.С., Вайнштейн И.А. // Усп. хим. 2021. Т. 90. № 11. С. 1397–1414. https://doi.org/10.1070/RCR4991
  6. 6. Hazra A., Jan A., Tripathi A., Kundu S., Boppidi P.K.R., Gangopadhyay S. // IEEE Trans. Electron Devices. 2020. V. 67. P. 2197–2204. https://doi.org/10.1109/TED.2020.2983755
  7. 7. Vokhmintsev A., Petrenyov I., Kamalov R., Weinstein I. // Nanotechnology. 2022. V. 33. 075208. https://doi.org/10.1088/1361-6528/ac2e22
  8. 8. Yakushev A.A., Abel A.S., Averin A.D., Beletskaya I.P., Cheprakov A.V., Ziankou I.S., Bonneviot L., Bessmertnykh-Lemeune A. // Coord. Chem. Rev. 2022. V. 458. 214331. https://doi.org/10.1016/j.ccr.2021.214331
  9. 9. Beletskaya I.P., Ananikov V.P. // Chem. Rev. 2011. V. 111. P. 1596–1636. https://doi.org/10.1021/cr100347k
  10. 10. Yoo J., Lee K., Tighineanu A., Schmuki P. // Electrochem. Comm. 2013. V. 34. P. 177–180. https://doi.org/10.1016/j.elecom.2013.05.038
  11. 11. Вохминцев А.С., Вайнштейн И.А., Камалов Р.В., Дорошева И.Б. // Изв. РАН. Сер. Физ. 2014. Т. 78. № 9. С. 1176–1179. https://doi.org/10.7868/S0367676514090312
  12. 12. Du G., Li H., Mao Q., Ji Z. // J. Phys. D: Appl. Phys. 2016. V. 49. 445105. https://doi.org/10.1088/0022-3727/49/44/445105
  13. 13. Gao S., Zeng F., Chen C., Tang G., Lin Y., Zheng Z., Song C., Pan F. // Nanotechnol. 2013. V. 24. 335201. https://doi.org/10.1088/0957-4484/24/33/335201
  14. 14. Milano G., Aono M., Boarino L., Celano U., Hasegawa T., Kozicki M., Majumdar S., Menghini M., Miranda E., Ricciardi C., Tappertzhofen S., Terabe K., Valov I. // Adv. Mater. 2022. V. 34 № 32. 2201248. https://doi.org/10.1002/adma.202201248
  15. 15. Xue W., Gao S., Shang J., Yi X., Liu G., Li R.-W. // Adv. Electron. Mater. 2019. V. 5 № 9. 1800854. https://doi.org/10.1002/aelm.201800854
  16. 16. Kuzmenko A.B., van Heumen E., Carbone F., van der Marel D. // Phys. Rev. Lett. 2008. V. 100. 117401. https://doi.org/10.1103/PhysRevLett.100.117401
  17. 17. Вохминцев А.С., Камалов Р.В., Петренев И.А., Вайнштейн И.А. Способ получения нанотрубок диоксида циркония с квантовыми проводниками. Патент РФ 2758998. 2021.
  18. 18. Carlos E., Branquinho R., Martins R., Kiazadeh A., Fortunato E. // Adv. Mater. 2021. V. 33. 2004328. https://doi.org/10.1002/adma.202004328
  19. 19. Waser R., Dittmann R., Staikov G., Szot K. // Adv. Mater. 2009. V. 21. P. 2632–2663. https://doi.org/10.1002/adma.200900375
  20. 20. Petrenyov I.A., Kamalov R.V., Vokhmintsev A.S., Martemyanov N.A., Weinstein I.A. // J. Phys. Conf. Ser. 2018. V. 1124. 022004. https://doi.org/10.1088/1742-6596/1124/2/022004
  21. 21. Gryaznov A.O., Dorosheva I.B., Vokhmintsev A.S., Kamalov R.V., Weinstein I.A. Automatized complex for measuring the electrical properties of MIM structures // 2016 International Siberian Conference on Control and Communications (SIBCON), Moscow, Russia, 12–14 May, 2016. 7491772. https://doi.org/10.1109/SIBCON.2016.7491772
  22. 22. Chen C.-C., Say W.C., Hsieh S.-J., Diau E.W.-G. // Appl. Phys. A. 2009. V. 95. P. 889–898. https://doi.org/10.1007/s00339-009-5093-6
  23. 23. Zhao S., Xue J., Wang Y., Yan S. // J. Appl. Phys. 2012. V. 111. 043514. https://doi.org/10.1063/1.3682766
  24. 24. Lyons J.L., Janotti A., Van de Walle C.G. // Microelectron. Eng. 2011. V. 88. P. 1452–1456. https://doi.org/10.1016/j.mee.2011.03.099
  25. 25. Vokhmintsev A.S., Petrenyov I.A., Kamalov R.V., Karabanalov M.S., Weinstein I.A. // J. Lumin. 2022. V. 252. 119412. https://doi.org/10.1016/ j.jlumin.2022.119412
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library