RAS PresidiumДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

EFFECT OF pH ON MOLECULAR ASSOCIATIONS IN FULVIC ACID SOLUTIONS

PII
10.31857/S2686953523600137-1
DOI
10.31857/S2686953523600137
Publication type
Status
Published
Authors
Volume/ Edition
Volume 513 / Issue number 1
Pages
135-138
Abstract
The effect of alkalinization of fulvic acids (FA) solutions on an increase in their optical density is studied. To explain the observed phenomenon, the investigation of FA particles in solutions with different pH was carried out using scanning electron microscopy (SEM) and scanning tunneling microscopy (STM). It was found that with an increase in pH, there is a noticeable decrease in the size of the observed supramolecular formations from FA from about 200 to 100 nm, and when studying FA samples on STM, it was shown that FA in solutions exist in the form of supramolecular formations several hundred nanometers in size, formed by particles-molecules of FA 10–20 nm. An explanation of the observed phenomenon was proposed based on existing ideas about the supramolecular fractal-cluster organization of humic substances (HS). It consists in the fact that the upper layer of F-clusters disintegrates into particles-molecules of FA with a decrease in their size observed with the help of SEM. At the same time, particles-molecules of FA due to their small size are not visible with the help of SEM, but they are well visualized when using STM.
Keywords
надмолекулярные структуры фульвокислот фрактальные кластеры растровая электронная микроскопия сканирующая туннельная микроскопия
Date of publication
18.09.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Орлов Д.С. Гумусовые кислоты почв и общая теория гумификации. М.: Изд-во МГУ,1990. 325 с.
  2. 2. Пономарева В.В., Плотникова Т.А. Гумус и почвообразование (методы и результаты изучения). Л.: Наука, 1980. 222 с.
  3. 3. Piccolo A. // Soil Sci. 2001. V. 166. № 11. P. 810–832.https://doi.org/10.1097/00010694-200111000-00007
  4. 4. Sutton R., Sposito G. // Environ. Sci. Technol. 2005. V. 39. № 23. P. 9009–9015. https://doi.org/10.1021/es050778q
  5. 5. Osterberg R., Mortensen K. // Eur. Biophys. J. 1992. V. 21. № 3. P. 163–167. https://doi.org/10.1007/BF00196759
  6. 6. Яминский И.В., Ахметова А.И., Мешков Г.Б. // Наноиндустрия. 2018. Т. 11. № 6 (85). С. 414–416. https://doi.org/10.22184/1993-8578.2018.11.6.414.416
  7. 7. Дударчик В.М., Смычник Т.П. // Почвоведение. 2003. № 11. С. 1335–1341.
  8. 8. Balnois E., Wilkinson K.J., Lead J., Buffle J. // Environ. Sci. Technol. 1999. V. 33. № 21. P. 3911–3917. https://doi.org/10.1021/es990365n
  9. 9. Ge X., Zhou Y., Lü C., Tang H. // Sci. China Ser. B. 2006. V. 49. № 3. P. 256–266. https://doi.org/10.1007/s11426-006-0256-1
  10. 10. Da Costa Saab S., Carvalho E.R., Bernardes F.R., de  Moura M.R., Martin-Neto L., Mattoso L.H.C. // J. Braz. Chem. Soc. 2010. V. 21. P. 1490–1496. https://doi.org/10.1590/S0103-50532010000800012
  11. 11. Senesi N., Rizzi F.R., Dellino P., Acquafredda P. // Colloids Surf. A: Physicochem. Eng. Aspects. 1997. V. 127. № 1–3. P. 57–68. https://doi.org/10.1016/S0927-7757 (96)03949-0
  12. 12. Senesi N., Rizzi F.R., Dellino P., Acquafredda P. // Soil Sci. Soc. Am. J. 1996. V. 60. № 6. P. 1613–1678. https://doi.org/10.2136/sssaj1996.03615995006000060023x
  13. 13. Biophysical chemistry of fractal structures and processes in environmental systems. Senesi N., Wilkinson K.J. (Eds.). John Wiley & Sons Ltd., 2008. 342 p.
  14. 14. Федотов Г.Н., Добровольский Г.В. // Почвоведение. 2012. № 8. С. 908–920.
  15. 15. Милановский Е.Ю. Гумусовые вещества почв как природные гидрофобно-гидрофильные соединения. М.: ГЕОС, 2009. 186 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library