RAS PresidiumДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

A NEW APPROACH TO THE SYNTHESIS OF HIGHLY DISPERSED DOUBLE LITHIUM-NICKEL AND DOUBLE LITHIUM-COBALT PHOSPHATES WITH THE DESIGNED PARTICLE MORPHOLOGY

PII
10.31857/S2686953523600228-1
DOI
10.31857/S2686953523600228
Publication type
Status
Published
Authors
Volume/ Edition
Volume 513 / Issue number 1
Pages
93-99
Abstract
The paper presents a new low-temperature method for the synthesis of highly dispersed powders of double phosphates LiCoPO4 and LiNiPO4 using low-waste technology. It has been shown that the morphology and particle size of the obtained materials depend on the type of initial precursors. The obtained compounds are characterized by elemental, XRD, SEM, cyclic volammetry, cyclic chronopotentiometry analyses. A new approach to the synthesis of submicron powders of lithium double phosphates and transition metal (nickel, cobalt) is more effective compared to current methods.
Keywords
синтез двойные фосфаты катод электродные материалы электрохимические свойства
Date of publication
18.09.2025
Year of publication
2025
Number of purchasers
0
Views
6

References

  1. 1. Kraytsberg A., Ein-Eli Y. // Adv. Energy Mater. 2012. V. 2. № 8. P. 922–939. https://doi.org/10.1002/aenm.201200068
  2. 2. Song S., Peng X., Huang K., Zhang H., Wu F., Xiang Y., Zhang X. // Nanoscale Res. Lett. 2020. V. 15. P. 110. https://doi.org/10.1186/s11671-020-03335-8
  3. 3. Кулова Т.Л. // Электрохимия. 2013. Т. 49. № 1. С. 3–28. https://doi.org/10.7868/S0424857013010118
  4. 4. Örnek A. // J. Colloid Interface Sci. 2017. V. 504. P. 468–478. https://doi.org/10.1016/j.jcis.2017.05.118
  5. 5. Tolganbek N., Yerkinbekova Y., Kalybekkyzy S., Bake-nov Zh., Mentbayeva A. // J. Alloys Compd. 2021.V. 882. P. 160774. https://doi.org/10.1016/j.jallcom.2021.160774
  6. 6. Cheng Q., Zhao X., Yang G., Mao L., Liao F., Chen L., He P., Pan D., Chen Sh. // Energy Stor. Mater. 2021. V. 41. P. 842–882. https://doi.org/10.1016/j.ensm.2021.07.017
  7. 7. Kosova N.V., Podgornova O.A., Devyatkina E.T., Podugolnikov V.R., Petrov S.A. // J. Mater. Chem. A. 2014. V. 2. P. 20697–20705. https://doi.org/10.1039/C4TA04221B
  8. 8. Herle P., Ellis B., Coombs N., Nazar L.F. // Nat. Mater. 2004. V. 3. № 3. P. 147–152. https://doi.org/10.1038/nmat1063
  9. 9. Biendicho J.J., West A.R. // Solid State Ion. 2011. V. 203. № 1. P. 33–36. https://doi.org/10.1016/j.ssi.2011.08.006
  10. 10. Truong Q.D., Devaraju M.K., Tomai T., Honma I. // ACS Appl. Mater. Interfaces. 2013. V. 5. № 20. P. 9926–9932. https://doi.org/10.1021/am403018n
  11. 11. Kempaiah Devaraju M., Duc Truong Q., Hyodo H., Sasaki Y., Honma I. // Sci. Rep. 2015. V. 5. P. 11041. https://doi.org/10.1038/srep11041
  12. 12. Pourhakkak P., Taghizadeh A., Taghizadeh M., Ghaedi M., Haghdoust S. // Interface Sci. Technol. 2021. V. 33. P. 1–70. https://doi.org/10.1016/B978-0-12-818805-7.00001-1
  13. 13. Li Z., Peng Z., Zhang H., Hu T., Hu M., Zhu K., Wang X. // Nano Lett. 2016. V. 16. №. 1. P. 795–799. https://doi.org/10.1021/acs.nanolett.5b04855
  14. 14. Ludwig J., Nilges T. // J. Power Sources. 2018. V. 382. P. 101–115. https://doi.org/10.1016/j.jpowsour.2018.02.038
  15. 15. Karafiludis S., Buzanich A.G., Heinekamp C., Zimathies A., Smales J.G., Hodoroaba V.-D., ten Elshof J.E., Emmerling F., Stawski T.M. // Nanoscale. 2023. V. 15. № 8. P. 3952–3966. https://doi.org/10.1039/D2NR05630E
  16. 16. Zhang M., Garcia-Araez N., Hector A. L. // J. Mater. Chem. A. 2018. V.6 № 30. P. 14483–14517. https://doi.org/10.1039/C8TA04063J
  17. 17. Sreedeep S., Natarajan S., Aravindan V. // Curr. Opin. Electrochem. 2022. V. 31. P. 100868. https://doi.org/10.1016/j.coelec.2021.100868
  18. 18. Markevich E., Sharabi R., Gottlieb H., Borgel V., Fridman K., Salitra G., Aurbach D., Semrau G., Schmidt M.A., Schall N., Bruenig C. // Electrochem. Commun. 2012. V. 15. № 1. P. 22–25. https://doi.org/10.1016/j.elecom.2011.11.014
  19. 19. Маслова М.В., Жаров Н.В., Иваненко В.И. Способ получения двойного ортофосфата лития и переходного металла. Патент RU 2022 120 287 A от 01.03.2023 г.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library