RAS PresidiumДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

INFORMATION ENTROPY OF CATALYTIC REACTION

PII
10.31857/S2686953523600253-1
DOI
10.31857/S2686953523600253
Publication type
Status
Published
Authors
Volume/ Edition
Volume 513 / Issue number 1
Pages
125-130
Abstract
The indices based of information entropy are widely used as structural descriptors in chemistry. The change in information entropy in a chemical reaction is calculated as the deference between the values that correspond to the ensemble of products and ensemble of reactants. For the generalized scheme of a catalytic reaction, we derived the analytical expressions that connect its information entropy with the parameters of separate stages and corresponding summative equation. As found, the sum of the parameters of separate stages is proportional to the information entropy change in the formal non-catalytic reaction, and the fraction of the atoms of reacting (forming) molecules in the ensemble of initial substances (or products).
Keywords
информационная энтропия кооперативная энтропия молекулярный ансамбль химическая реакция катализ элементарные стадии
Date of publication
18.09.2025
Year of publication
2025
Number of purchasers
0
Views
8

References

  1. 1. Станкевич М.И., Станкевич И.В., Зефиров Н.С. // Усп. хим. 1988. Т. 57. С. 191–208. https://doi.org/10.1070/RC1988v057n03ABEH003344
  2. 2. Sabirov D.S., Shepelevich I.S. // Entropy. 2021. V. 23. P. 1240. https://doi.org/10.3390/e23101240
  3. 3. Barigye S.J., Marrero-Ponce Y., Pérez-Giménez F., Bonchev D. // Mol. Divers. 2014. V. 18. P. 673. https://doi.org/10.1007/s11030-014-9517-7
  4. 4. Basak S.C., Harriss D.K., Magnuson V.R. // J. Pharm. Sci. 1984. V. 73. P. 429. https://doi.org/10.1002/jps.2600730403
  5. 5. Жданов Ю.А. Энтропия информации в органической химии. Ростов-на-Дону: Изд-во РГУ, 1979. 56 с.
  6. 6. Sabirov D., Koledina K. // EPJ Web Conf. 2020. V. 244. P. 01016. https://doi.org/10.1051/epjconf/202024401016
  7. 7. Castellano G., Torrens F. // Phytochemistry. 2015. V. 116. P. 305. https://doi.org/10.1016/j.phytochem.2015.05.008
  8. 8. Sabirov D.Sh., Ori O., László I. // Fullerene Nanotube Carbon Nanostruct. 2018. V. 26. P. 100. https://doi.org/10.1080/1536383X.2017.1405389
  9. 9. Sabirov D.Sh., Tukhbatullina A.A., Shepelevich I.S. // Symmetry. 2022. V. 14. P. 1800. https://doi.org/10.3390/sym14091800
  10. 10. Krivovichev S.V. // Mineral. Mag. 2013. V. 77. P. 275. https://doi.org/10.1180/minmag.2013.077.3.05
  11. 11. Аксенов С.М., Ямнова Н.А., Боровикова Е.Ю., Стефанович С.Ю., Волков А.С., Дейнеко Д.В., Димитрова О.В., Гурбанова О.А., Хиксон A.E., Криво-вичев С.В. // Журн. структ. хим. 2020. Т. 61. № 11. С. 1856. https://doi.org/10.26902/JSC_id63255
  12. 12. Banaru D.A., Hornfeck W., Aksenov S.M., Banaru A.M. // CrystEngComm. 2023. V. 25. P. 2144. https://doi.org/10.1039/D2CE01542K
  13. 13. Banaru A.M., Aksenov S.M., Krivovichev S.V. // Symmetry. 2021. V. 13. P. 1399. https://doi.org/10.3390/sym13081399
  14. 14. Sabirov D.S., Ori O., Tukhbatullina A.A., Shepele-vich I.S. // Symmetry. 2021. V. 13. P. 1899. https://doi.org/10.3390/sym13101899
  15. 15. Sabirov D.Sh. // Comput. Theor. Chem. 2016. V. 1097. P. 83. https://doi.org/10.1016/j.comptc.2016.10.014
  16. 16. Bonchev D.G. // Bulgar. Chem. Commun. 1995. V. 28. P. 567.
  17. 17. Nagaraj N., Balasubramanian K. // Eur. Phys. J. Special Topics. 2017. V. 226. P. 3251. https://doi.org/10.1140/epjst/e2016-60347-2
  18. 18. Basak S.C. Chemoinformatics and bioinformatics by discrete mathematics and numbers: an adventure from small data to the realm of emerging big data. In: Big data analytics in chemoinformatics and bioinformatics (With applications to computer-aided drug design, cancer biology, emerging pathogens and computational toxicology). Basak S.C., Vračko M. (Eds.). Elsevier, 2023. P. 3–35.
  19. 19. Bertz S.H. // New J. Chem. 2003. V. 27. P. 860. https://doi.org/10.1039/B210843G
  20. 20. Dehmer M., Mowshowitz A. // Inf. Sci. 2011. V. 181. P. 57. https://doi.org/10.1016/j.ins.2010.08.041
  21. 21. Смоленский Е.А., Чуваева И.В., Лапидус А.Л. // Докл. АН. 2011. Т. 437. № 5. С. 651. https://doi.org/10.1134/S0012500811040100
  22. 22. Rashevsky N. // Bull. Math. Biophys. 1955. V. 17. P. 229. https://doi.org/10.1007/BF02477860
  23. 23. Karreman G. // Bull. Math. Biol. 1955. V. 17. P. 279. https://doi.org/10.1007/BF02477754
  24. 24. Кобозев Н.И. // Журн. физ. химии. 1966. Т. 40. С. 281.
  25. 25. Кобозев Н.И., Страхов Б.В., Рубашов А.М. // Журн. физ. химии. 1971. Т. 45. С. 86.
  26. 26. Кобозев Н.И., Страхов Б.В., Рубашов А.М. // Журн. физ. химии. 1971. Т. 45. С. 375.
  27. 27. Ugi I., Gillespie P. // Angew. Chem. 1971. V. 10. P. 914. https://doi.org/10.1002/anie.197109141
  28. 28. Sabirov D.Sh. // Comput. Theor. Chem. 2020. V. 1187. P. 112933. https://doi.org/10.1016/j.comptc.2020.112933
  29. 29. Sabirov D.S. // Comput. Theor. Chem. 2018. V. 1123. P. 169. https://doi.org/10.1016/j.comptc.2017.11.022
  30. 30. Нильсен М., Чанг И. Квантовые вычисления и квантовая информация. Пер. с англ. М.: Мир, 2013. 822 с. (пер. с англ.: Nielsen M.A., Chuang I.L. Quantum Computation and Quantum Information. Cambridge University Press, 2001).
  31. 31. Sabirov D.S., Tukhbatullina A.A., Shepelevich I.S. // J. Mol. Graph. Model. 2022. V. 110. P. 108052. https://doi.org/10.1016/j.jmgm.2021.108052
  32. 32. Sabirov D.Sh., Terentyev O.A., Sokolov V.I. // RSC Adv. 2016. V. 6. P. 72230. https://doi.org/10.1039/C6RA12228K
  33. 33. Тухбатуллина А.А., Шепелевич И.С., Сабиров Д.Ш. // Вестн. Башкирск. ун-та. 2022. Т. 27. № 2. С. 349. https://doi.org/10.33184/bulletin-bsu-2022.2.16
  34. 34. Özbek M.O., van Santen R.A. // Catal. Lett. 2013. V. 143. P. 131. https://doi.org/10.1007/s10562-012-0957-3
  35. 35. Xie Y.-P., Shen Y.-L., Duan G.-X., Han J., Zhang L.-P., Lu X. // Mater. Chem. Front. 2020. V. 4. P. 2205. https://doi.org/10.1039/D0QM00117A
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library