RAS PresidiumДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

A NEW MULTIFUNCTIONAL LUBRICANT ADDITIVE BASED ON A SULFUR-CONTAINING DERIVATIVE OF 2,6-DIMETHYLPHENOL

PII
10.31857/S2686953523600290-1
DOI
10.31857/S2686953523600290
Publication type
Status
Published
Authors
Volume/ Edition
Volume 512 / Issue number 1
Pages
59-64
Abstract
New dialkyldithio derivatives of 2,6-dimethylphenol have been synthesized and characterized. For the first time, the polyfunctional properties of these compounds have been studied as additives to lubricating oils in the processes of friction and wear in the boundary friction regime, as inhibitors of high-temperature oxidation of hydrocarbons, and as protectors of metal surfaces. It has been established that already with the content of synthesized additives in lubricating oils in the amount of 0.5 wt. % antiwear properties are improved more than twice. It has been shown that additives exhibit a complex antioxidant effect and high efficiency at all stages of the oxidation process, and even at ultra-low concentrations (0.005 wt. %), their ability to resist oxidation exceeds widely used analogs. New additives are of considerable interest to modern lubrication science, and they can be used in motor oil compositions and other lubricants.
Keywords
производные 2,6-диалкилфенола производные дитиокарбаминовых кислот присадки к смазочным маслам трение и износ антиокислительные свойства противокоррозионные свойства
Date of publication
18.09.2025
Year of publication
2025
Number of purchasers
0
Views
7

References

  1. 1. Рудник Л.Р. Присадки к смазочным материалам. Свойства и применение. Пер. с англ. под ред. Данилова А.М. Санкт-Петербург: Профессия, 2013. 927 с. (Rudnick L.R. Lubricant Additives. Chemistry and Applications. Second Edition. London, New York: CRC Press Taylor & Francis Group, 2009).
  2. 2. Hörner D. // J. Synth. Lubrication. 2002. V. 18. № 4. P. 327–347. https://doi.org/10.1002/jsl.3000180407
  3. 3. Spikes H. // Tribol. Lett. 2004. V. 17. № 3. P. 469–489. https://doi.org/10.1023/B:TRIL.0000044495.26882.b5
  4. 4. Inoue K., Kurahashi T., Negishi T., Akiyama T., Arimura K., Tasaka K. // SAE Technical Paper. 1992. P. 920654. https://doi.org/10.4271/920654
  5. 5. Koltsakis G.C., Stamatelos A.M. // Prog. Energy Combust. Sci. 1997. V. 23. № 1. P. 1–39. https://doi.org/10.1016/S0360-1285 (97)00003-8
  6. 6. Kumar S.V., Rogalo J., Deeba M., Burk P.L., Ferrari V. // SAE Technical Paper. 2003. P. 2003-01-3735. https://doi.org/10.4271/2003-01-3735
  7. 7. Franz J., Schmidt J., Schoen C., Harpersheid M., Eckhoff S., Roesch M., Leyrer J. // SAE Technical Paper. 2005. P. 2005-01-1097. https://doi.org/10.4271/2005-01-1097
  8. 8. Spikes H. // Lubrication Sci. 2008. V. 20. № 2. P. 103–136. https://doi.org/10.1002/ls.57
  9. 9. Паренаго О.П., Оганесова Э.Ю., Лядов А.С., Шараева А.А. // Журн. прикл. хим. 2020. Т. 93. № 11. С. 1523–1542. https://doi.org/10.31857/S0044461820110018
  10. 10. Переслегина Н.С., Кузьмина Г.Н., Маркова Е.И., Санин П.И. // Нефтехимия. 1986. Т. 26. № 4. С. 563–570.
  11. 11. Переслегина Н.С., Кузьмина Г.Н., Дзюбина М.А., Санин П.И. // Нефтехимия. 1988. Т. 28. № 6. С. 813–822.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library