RAS PresidiumДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

STRUCTURAL DESIGN OF Eu2+-CONTAINING GLASS AND GLASS-CERAMICS BASED ON THE SYSTEM BaO–ZrO2–SiO2–MgF2 FOR LED APPLICATION

PII
10.31857/S2686953523700231-1
DOI
10.31857/S2686953523700231
Publication type
Status
Published
Authors
Volume/ Edition
Volume 512 / Issue number 1
Pages
101-106
Abstract
For the first time, an approach to designing the structure of Eu2+ containing silicate glass-ceramics materials has been experimentally implemented, which consists in the fact that rare earth activator is introduced into various crystals formed during glass crystallization. Transparent Eu-containing glass and glass ceramics based on the system BaO–ZrO2–SiO2–MgF2 were prepared by the traditional glass melting method at 1450°C. The crystal structure and properties of materials were characterized by XRD analysis and photoluminescence spectroscopy during different stages of glass crystallization. It is shown that the simultaneous incorporation of Eu into different silicate crystals (Ba2SiO4, BaMgSiO4, and BaSiO3) formed during the glass crystallization leads to the formation of a material with a wide luminescence band in the visible part of the spectrum. The study of photoluminescence and luminescence excitation spectra of the glass suggests the possibility of energy transfer from Eu2+ to Eu3+ ions. The structures of Eu2+ luminescent centers are similar in the glass and glass-ceramics that is related to some phase separation in the glass before crystallization. The study of luminescence properties of prepared materials showed that these materials can be promising for the application in LEDs techniques.
Keywords
ситалл силикаты бария люминесценция Eu<sup>2+</sup>
Date of publication
18.09.2025
Year of publication
2025
Number of purchasers
0
Views
5

References

  1. 1. Liu J., Wang Z., He K., Wei L., Zhang Z., Wei Z., Yu H., Zhang H., Wang J. // Opt. Express. 2014. V. 22. № 22. P. 26933–26938. https://doi.org/10.1364/OE.22.026933
  2. 2. Булыга Д.В., Евстропьев С.К. // Опт. и спектр. 2022. Т. 130. № 9. С. 1455–1463. https://doi.org/10.21883/OS.2022.09.53309.3617-22
  3. 3. Vu N.-N., Kaliaguine S., Do T.-O. // Adv. Funct. Mater. 2019. V. 29. P. 1901825. https://doi.org/10.1002/adfm.201901825
  4. 4. Hu T., Ning L., Gao Y., Qiao J., Song E., Chen Z., Zhou Y., Wang J., Molokeev M.S., Ke X., Xia Z., Zhang Q. // Light Sci. Appl. 2021. V. 10. P. 56. https://doi.org/10.1038/s41377-021-00498-6
  5. 5. Biswas K., Sontakke A.D., Sen R., Annapurna K. // J. Fluoresc. 2012. V. 22. P. 745–752. https://doi.org/10.1007/s10895-011-1010-4
  6. 6. Lin H., Hu T., Cheng Y., Chen M., Wang Y. // Laser Photon. Rev. 2018. V. 12. № 6. P. 1700344. https://doi.org/10.1002/lpor.201700344
  7. 7. Nakanishi T., Tanabe S. // J. Light Vis. Env. 2008. V. 32. № 2. P. 93–96. https://doi.org/10.2150/jlve.32.93
  8. 8. Evstropiev S.K., Shashkin A.V., Knyazyan N.B., Manu-kyan G.G., Bagramyan V.V., Timchuk A.V., Stolyaro-va V.L. // J. Non-Cryst. Solids. 2022. V. 580. P. 121386. https://doi.org/10.1016/j.jnoncrysol.2021.121386
  9. 9. Lima S.M., da Cunha Antrade L.H., Silva J.R., Bento A.C., Baesso M.L., Sampaio J.A., de Oliveira Nunes L.A., Guyot Y., Boulon G. // Opt. Express. 2012. V. 20. № 12. P. 12658–12665. https://doi.org/10.1364/OE.20.012658
  10. 10. Chen D., Xiang W., Liang X., Zhong J., Yu H., Ding M., Lu H., Ji Z. // J. Eur. Ceram. Soc. 2015. V. 35. № 3. P. 859–869. https://doi.org/10.1016/j.jeurceramsoc.2014.10.002
  11. 11. Yu H., Zi W., Lan S., Gan S., Zou H., Xu X., Hong G. // Luminescence. 2013. V. 28. № 5. P. 679–684. https://doi.org/10.1002/bio.2415
  12. 12. Qiao J., Xia Z. // J. Appl. Phys. 2021. V. 129. P. 200903. https://doi.org/10.1063/5.0050290
  13. 13. Zhao M., Zhang Q., Xia Z. // Acc. Mater. Res. 2020. V. 1. № 2. P. 137–145. https://doi.org/10.1021/accountsmr.0c00014
  14. 14. Shannon R.D. // Acta Cryst. 1976. V. A32. P. 751–767. https://doi.org/10.1107/S0567739476001551
  15. 15. Han J.K., Hannah M.E., Piquette A., Talbot J.B., Mishra K.C., McKittrick J. // J. Lumin. 2015. V. 161. P. 20–24. https://doi.org/10.1016/j/jlumin.2014.12.032
  16. 16. Xu J., Zhao Y., Chen J., Mao Z., Yang Y., Wang D. // Luminescence. 2017. V. 32. № 6. P. 957–963. https://doi.org/10.1002/bio.3277
  17. 17. Ling H., Hu T., Cheng Y., M. Chen, Wang Y. // Laser Photonics Rev. 2018. V. 12. № 6. P.1700344. https://doi.org/10.1002/lpor.201700344
  18. 18. Bispo Jr. A.G., Ceccato D.A., Lima S.A.M., Pires A.M. // RSC Adv. 2017. V. 7. P. 53752–53762. https://doi.org/10.1039/c7ra10494d
  19. 19. Chen J., Liu Y.-G., Liu H., Yang D., Ding H., Fang M., Huang Z. // RSC Adv. 2014. V. 4. P. 18234–18239. https://doi.org/10.1039/C4RA00452C
  20. 20. Kim D., Jeon K.-W., Jin J.S., Kang S.-G., Seo D.-K., Park J.-C. // RSC Adv. 2015. V. 5. P. 105339–105346. https://doi.org/10.1039/C5RA19712K
  21. 21. Ji W., Lee M.-H., Hao L., Xu X., Agathopoulos S., Zheng D., Fang C. // Inorg. Chem. 2015. V. 54. P. 1556–1562. https://doi.org/10.1021/ic502568s
  22. 22. Zhang Q., Wang Q., Wang X., Ding X., Wang Y. // New J. Chem. 2016. V. 40. P. 8549–8555. https://doi.org/10.1039/C6NJ01831A
  23. 23. Sao S.K., Brahme N., Bisen D.P., Tiwari G. // Luminescence. 2016. V. 31. № 7. P. 1364–1371. https://doi.org/10.1002/bio.3116
  24. 24. Craievich A.F., Zanotto E.E., James P.F. // Bull. Minéral. 1983. V. 106. № 1–2. P. 169–184.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library