Президиум РАНДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

Фазообразование в щелочных титаносиликатных системах при гидротермальном синтезе

Код статьи
10.31857/S2686953523700255-1
DOI
10.31857/S2686953523700255
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 513 / Номер выпуска 1
Страницы
86-92
Аннотация
Проведены исследования в поликомпонентных высоко щелочных системах – TiO2–H2SO4–Na2SiO3–NaOH–H2O и TiO2–H2SO4–(NH4)2SO4–Na2SiO3–NaOH–H2O в условиях гидротермального синтеза, обеспечивающего получение новых продуктов с заданными техническими свойствами. Показано, что посредством направленного подбора структурообразующих компонентов, в частности соединений титана, совместно с оптимальными параметрами гидротермальной обработки полученного прекурсора возможно формирование соединений с заданным химическим составом, размером и морфологией частиц. Установлено, что при синтезе скорость структурных преобразований зависит от фазового состава титаносиликатных прекурсоров. При их гидротермальной обработке протекает щелочной и термический гидролиз с последующей дегидратацией гидролизованных фаз титана (IV) и кремния. Это сопровождается локализацией свободных связей, обеспечивающих образование Ti–O–Si–O-мостиков и их последующую трансформацию в структурированные новообразования.
Ключевые слова
гидротермальный синтез фазообразование кристаллические соединения минералоподобные титаносиликаты морфологические свойства сорбция
Дата публикации
18.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
2

Библиография

  1. 1. Yakovenchuk V.N., Krivovichev S.V., Pakhomovsky Y.A., Selivanova E.A., Ivanyuk G.Y. Microporous titanosilicates of the lintisite-kukisvumite group and their transformation in acidic solutions. In: Minerals as advanced materials II. Krivovichev S.V. (Ed.). Springer, Berlin, Heidelberg, 2012. P. 229–238. https://doi.org/10.1007/978-3-642-20018-2_23
  2. 2. Folli A., Pochard I., Nonat A., Jakobsen U.H., She-pherd A.M., Macphee D.E. // J. Am. Ceram. Soc. 2010. V. 93 (10). P. 3360–3369. https://doi.org/10.1111/j.1551-2916.2010.03838.x
  3. 3. Young D.A. Crystalline titano-silicate zeolites. Patent US3329481A. 1967.
  4. 4. Taramasso M., Perego G., Notari B. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides. Patent US4410501A. 1983.
  5. 5. Kuznicki S.M. Large-pored crystalline titanium mole-cular sieve zeolites. Patent US5011591A. 1991.
  6. 6. Ferraris G., Khomyakov A.P., Belluso E., Soboleva S. Polysomatic relationships in some titanosilicates occurring in the hyperagpaitic alkaline rocks of the Kola Peninsula, Russia. In: Mineralogy. Proc. 30th Int. Geol. Cong., V. 16. Huang Yunhui, Cao Yawen (Ed.). London: CRC Press. 1998. P. 17–27. https://doi.org/10.1201/9781003079569
  7. 7. Liu L., Tan W., Xiao P., Zhai Y. // Int. J. Miner. Metall. Mater. 2012. V. 19. P. 675–678. https://doi.org/10.1007/s12613-012-0612-4
  8. 8. Xu H., Zhang Y., Navrotsky A. // Micropor. Mesopor. Mat. 2001. V. 47. P. 285–291. https://doi.org/10.1016/S1387-1811 (01)00388-2
  9. 9. Mann N.R., Todd T.A. // Sep. Sci. Technol. 2005. V. 39. № 10. P. 2351–2371. https://doi.org/10.1081/SS-120039321
  10. 10. Спиридонова Д.В., Кривовичев С.В., Яковенчук В.Н., Пахомовский Я.А. // ЗРМО. 2010. № 5. С. 79–88.
  11. 11. Gerasimova L.G., Nikolaev A.I., Shchukina E.S., Mas-lova M.V. // Dokl. Chem. 2020. V. 491. № 1. C. 49–53. https://doi.org/10.1134/S0012500820030039
  12. 12. Щукина Е.С., Герасимова Л.Г., Маслова М.В. // Фундаментальные исследования. 2018. № 11–1. С. 18–23. https://doi.org/10.17513/fr.42294
  13. 13. Wei M., Zhang L., Xiong Y., Li J., Peng P. // Microporous Mesoporous Mater. 2016. V. 227. P. 88–94. https://doi.org/10.1016/j.micromeso.2016.02.050
  14. 14. De Boer J.H., Lippens B.C., Linsen B.G., Broekhoff J.C.P., van den Heuvel A., Osinga Th.J. // J. Colloid Interface Sci. 1966. V. 21. № 4. P. 405–414. https://doi.org/10.1016/0095-8522 (66)90006-7
  15. 15. Neimark A.V., Ravikovitch P.I., Vishnyakov A. // J. Phys. Condens. Matter. 2003. V. 15. № 3. P. 347–367. https://doi.org/10.1088/0953-8984/15/3/303
  16. 16. Samburov G.O., Kalashnikova G.O., Panikorovskii T.L., Bocharov V.N., Kasikov A., Selivanova E., Bazai A.V., Bernadskaya D., Yakovenchuk V.N., Krivovichev S.V. // Crystals. 2022. V. 12. № 3. P. 311. https://doi.org/10.3390/cryst12030311
  17. 17. Perovskiy I., Yanicheva N.Yu., Stalyugin V.V., Paniko-rovskii T.L., Golov A.A. // Microporous Mesoporous Mater. 2021. V. 311. P. 110716. https://doi.org/10.1016/j.micromeso.2020.110716
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека