Президиум РАНДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

Влияние микроструктуры поверхности на коррозионную устойчивость и магнитные свойства аморфного сплава на основе кобальта Co-Si-Fe-Cr-Al

Код статьи
10.31857/S2686953524010052-1
DOI
10.31857/S2686953524010052
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 514 / Номер выпуска 1
Страницы
50-58
Аннотация
Поверхность аморфного сплава на основе кобальта номинального состава Co75Si15Fe5Cr4.5Al0.5 была модифицирована наноструктурами при анодировании в ионной жидкости – бис(трифторметансульфонил)имиде 1-бутил-3-метилимидазолия. Проведено сравнение магнитных (удельной намагниченности насыщения и коэрцитивной силы) и коррозионных (потенциала коррозии и сопротивления) характеристик аморфного сплава до и после электрохимического модифицирования поверхности наноструктурами. Модифицирование поверхности сплава частично меняет его магнитные свойства. После коррозионных испытаний наблюдается возрастание значения коэрцитивной силы. Коррозионные испытания проводили методом поляризационных кривых в растворе Рингера. Коррозионная устойчивость модифицированных оксидными наноструктурами сплавов выше, чем коррозионная устойчивость шлифованного сплава. Увеличение коррозионной стойкости определяется в основном присутствием наноструктур.
Ключевые слова
ионные жидкости анодирование наноструктуры магнитные наночастицы функционализация поверхности магнитные материалы магнитные сплавы коррозия самоорганизация хранение информации
Дата публикации
18.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
3

Библиография

  1. 1. Chiriac H., Herea D.-D., Corodeanu S. // J. Magn. Magn. Mater. 2007. V. 311. № 1. P. 425–428. https://doi .org/10.1016/j.jmmm.2006.11.207
  2. 2. Louzguine-Luzgin D.V., Ketov S.V., Trifonov A.S., Churymov A.Yu. // J. Alloys Compd. 2018. V. 742. P. 512–517. https://doi .org/10.1016/j.jallcom.2018.01.290
  3. 3. Ackland K., Masood A., Kulkarni S., Stamenov P. // AIP Advances. 2018. V. 8. № 5. P. 056129. https://doi .org/10.1063/1.5007707
  4. 4. Xu D.D., Zhou B.L., Wang Q.Q., Zhou J., Yang W.M., Yuan C.C., Xue L., Fan X.D., Ma L.Q., Shen B.L. // Corros. Sci. 2018. V. 138. P. 20–27. https://doi .org/10.1016/j.corsci.2018.04.006
  5. 5. Xu J., Yang Y., Li W., Xie Z., Chen X. // Mater. Res. Bull. 2018. V. 97. P. 452–456. https://doi .org/10.1016/j.materresbull.2017.09.042
  6. 6. Permyakova I.E., Glezer A.M., Savchenko E.S., Shchetinin I.V. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. № 11. P. 1310–1316. https://doi .org/10.3103/S1062873817110144
  7. 7. Han J., Hong J., Kwon S., Choi-Yim H. // Metals. 2021. V. 11. № 2. P. 304. https://doi .org/10.3390/met11020304
  8. 8. Lone S.A., Mardare C.C., Mardare A.I., Hassel A.W. // Meet. Abstr. 2021. V. MA2021-01. № 18. P. 797. https://doi .org/10.1149/MA2021-0118797mtgabs
  9. 9. Hu J., Zhang X., Liu H., Fu B., Dong Z., Wang Y. // J. Supercond. Nov. Magn. 2022. V. 35. № 6. P. 1569–1574.
  10. 10. Nyby C., Guo X., Saal J.E., Chien S.-C., Gerard A.Y., Ke H., Li T., Lu P., Oberdorfer C., Sahu S., Li S., Taylor C.D., Windl W., Scully J.R., Frankel G.S. // Sci. Data. 2021. V. 8. № 1. P. 58. https://doi .org/10.1038/s41597-021-00840-y
  11. 11. Hu J., Dong C., Li X., Xiao K. // J. Mater. Sci. Technol. 2010. V. 26. № 4. P. 355–361. https://doi .org/10.1016/S1005-0302(10)60058-8
  12. 12. Chernavsky P.A., Kim N.V., Andrianov V.A., Perfiliev Y.D., Novakova A.A., Perov N.S. // RSC Adv. 2021. V. 11. № 25. P. 15422–15427. https://doi .org/10.1039/D1RA01200B
  13. 13. Lebedeva O., Kultin D., Kustov L. // Nanomaterials. 2021. V. 11. № 12. P. 3270. https://doi .org/10.3390/nano11123270
  14. 14. Lebedeva O., Kultin D., Zakharov A., Кustov L. // Surf. Interfaces. 2022. V. 34. P. 102345. https://doi .org/10.1016/j.surfin.2022.102345
  15. 15. Lebedeva O., Snytko V., Kuznetsova I., Kalmykov K., Kultin D., Root N., Philippova S., Dunaev S., Zakharov A., Kustov L. // Metals. 2020. V. 10. № 5. P. 583. https://doi .org/10.3390/met10050583
  16. 16. Lebedeva O., Kultin D., Kalmykov K., Snytko V., Kuznetsova I., Orekhov A., Zakharov A., Kustov L. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 1. P. 2025–2032. https://doi .org/10.1021/acsami.0c19392
  17. 17. Gaikar P.S., Angre A.P., Wadhawa G., Ledade P.V., Mahmood S.H., Lambat T.L. // Curr. Res. Green Sustainable Chem. 2022. V. 5. P. 100265. https://doi .org/10.1016/j.crgsc.2022.100265
  18. 18. Saverina E.A., Zinchenko D.Y., Farafonova S.D., Galushko A.S., Novikov A.A., Gorbachevskii M.V., Ananikov V.P., Egorov M.P., Jouikov V.V., Syroeshkin M.A. // ACS Sustainable Chem. Eng. 2020. V. 8. № 27. P. 10259–10264. https://doi .org/10.1021/acssuschemeng.0c03133
  19. 19. Uran S., Veal B., Grimsditch M., Pearson J., Berger A. // Oxid. Met. 2000. V. 54. № 1/2. P. 73–85. https://doi .org/10.1023/A:1004650612791
  20. 20. Osei-Agyemang E., Balasubramanian G. // npj Mater. Degrad. 2019. V. 3. № 1. P. 20. https://doi .org/10.1038/s41529-019-0082-5
  21. 21. Pontinha M., Faty S., Walls M.G., Ferreira M.G.S., Cunha Belo M.D. // Corros. Sci. 2006. V. 48. № 10. P. 2971–2986. https://doi .org/10.1016/j.corsci.2005.10.007
  22. 22. Chang A.S., Tahira A., Chang F., Solangi A.G., Bhatti M.A., Vigolo B., Nafady A., Ibupoto Z.H. // Biosensors. 2023. V. 13. № 1. P. 147. https://doi .org/10.3390/bios13010147
  23. 23. Kuznetsova I., Lebedeva O., Kultin D., Kalmykov K., Philippova S., Leonov A., Kustov L. // ECS Trans. 2022. V. 109. № 14. P. 87–94. https://doi .org/10.1149/10914.0087ecst
  24. 24. Zhang L., Xiong X., Yan Y., Gao K., Qiao L., Su Y. // Int. J. Miner. Metall. Mater. 2019. V. 26. № 6. P. 732–739. https://doi .org/10.1007/s12613-019-1803-z
  25. 25. Garcia-Falcon C.M., Gil-Lopez T., Verdu-Vazquez A., Mirza-Rosca J.C. // Mater. Chem. Phys. 2021. V. 260. P. 124164. https://doi .org/10.1016/j.matchemphys.2020.124164
  26. 26. Souza C.A.C., Ribeiro D.V., Kiminami C.S. // J. Non Cryst. Solids. 2016. V. 442. P. 56–66. https://doi .org/10.1016/j.jnoncrysol.2016.04.009
  27. 27. Skulkina N.A., Ivanov O.A., Stepanova E.A., Shubina L.N., Kuznetsov P.A., Mazeeva A.K. // Phys. Metals Metallogr. 2015. V. 116. № 12. P. 1182–1189. https://doi .org/10.1134/S0031918X1512011X
  28. 28. Vakhitov R.M., Shapayeva T.B., Solonetskiy R.V., Yumaguzin A.R. // Phys. Metals Metallogr. 2017. V. 118. № 6. P. 541–545. https://doi .org/10.1134/S0031918X17040111
  29. 29. Шалыгина Е.Е., Агапонова А.В., Тараканов О.Н., Рыжиков И.А., Шалыгин А.Н. // Письма в ЖТФ. 2011. Т. 37. № 9. С. 37–44. https://doi .org/10.1134/S1063785011050154
  30. 30. Агапонова А.В., Шалыгина Е.Е., Тараканов О.Н., Быков И.В., Маклаков С.А., Пухов А.А., Рыжиков И.А., Седова М.В., Якубов И.Т. // Изв. РАН. Сер. физ. 2011. Т. 75. № 2. С. 200–202. https://doi .org/10.3103/S1062873811020031
  31. 31. Dokukin M.E., Perov N.S., Dokukin E.B., Beskrovnyi A.I., Zaichenko S.G. // Physica B: Condens. Matter. 2005. V. 368. № 1–4. P. 267–272. https://doi .org/10.1016/j.physb.2005.07.020
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека