RAS PresidiumДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

High-entropy carbide (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C mechanical properties prediction with the use of machine learning potential

PII
10.31857/S2686953524010073-1
DOI
10.31857/S2686953524010073
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 514 / Issue number 1
Pages
65-71
Abstract
The six-component high-entropy carbide (HEC) (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C has been studied. The electronic structure was calculated by using the ab initio package VASP for a supercell with 512 atoms constructed by using special quasi-random structures. The artificial neural networks potential (ANN-potential) was obtained by deep machine learning. The quality of the ANN-potential was estimated by the value of the energies, forces, and virials standard deviations. The generated ANN-potential was used to analyze both a defect-free model of the specified alloy, with 4096 atoms, and for the first time a polycrystalline HEC model, with 4603 atoms, by using the LAMMPS classical molecular dynamics package. The simulation of uniaxial cell tension was carried out, the elasticity coefficients, the all-round compression modulus, the elasticity modulus, and Poisson’s ratio were determined. The obtained values are in good agreement with the experimental and calculated data, which indicates a good predictive ability of the generated ANN-potential.
Keywords
высокоэнтопийная керамика ab initio молекулярная динамика потенциал машинного обучения механические свойства
Date of publication
18.09.2025
Year of publication
2025
Number of purchasers
0
Views
7

References

  1. 1. Yeh J.-W., Chen S.-K., Lin S.-J., Gan J.-Y., Chin T.-S., Shun T.-T., Tsau C.-H., Chang S.-Y. // Adv. Eng. Mater. 2004. V. 6. № 5. P. 299–303.
  2. 2. https://doi.org/10.1002/adem.200300567
  3. 3. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. // Mater. Sci. Eng., A. 2004. V. 375. P. 213–218. https://doi .org/10.1016/j.msea.2003.10.257
  4. 4. Rost C.M., Sachet E., Borman T., Moballegh A., Dickey E.C., Hou D., Jones J.L., Curtarolo S., Maria J.-P. // Nat. Commun. 2015. V. 6. P. 8485–8492. https://doi .org/10.1038/ncomms9485
  5. 5. Gild J., Zhang Y., Harrington T., Jiang S., Hu T., Quinn M.C., Mellor W.M., Zhou N., Vecchio K., Luo J. // Sci. Rep. 2016. V. 6. P. 37946. https://doi .org/10.1038/srep37946
  6. 6. Han X., Girman V., Sedlák R., Dusza J., Castle E., Wang Y., Reece M., Zhang C. // J. Eur. Ceram. Soc. 2020. V. 40. № 7. P. 2709–2715. https://doi .org/10.1016/j.jeurceramsoc.2019.12.036
  7. 7. Sarker P., Harrington T., Toher C., Oses C., Samiee M., Maria J.-P., Brenner D.W., Vecchio K.S., Curtarolo S. // Nat. Commun. 2018. V. 9. P. 4980. https://doi .org/10.1038/s41467-018-07160-7
  8. 8. Gelchinski B.R., Balyakin I.A., Yuryev A.A., Rempel A.A. // Russ. Chem. Rev. 2022. V. 91. № 6. P. RCR5023. https://doi .org/10.1070/RCR5023
  9. 9. Hohenberg P., Kohn W. // Phys. Rev. 1964. V. 136. № 3B. P. B864. https://doi .org/10.1103/PhysRev.136.B864
  10. 10. Kohn W., Sham L.J. // Phys. Rev. 1965. V. 140. № 4A. P. A1133. https://doi .org/10.1103/PhysRev.140.A1133
  11. 11. Zunger A., Wei S.-H., Ferreira L.G., Bernard J.E. // Phys. Rev. Lett. 1990. V. 65. № 3. P. 353–356. https://doi .org/10.1103/PhysRevLett.65.353
  12. 12. Гельчинский Б.Р., Мирзоев А.А., Воронцов А.Г. Вычислительные методы микроскопической теории металлических расплавов и нанокластеров. М.: Физматлит, 2011. 200 с.
  13. 13. Alder B.J., Wainwright T.E. // J. Chem. Phys. 1957. V. 27. P. 1208–1209. https://doi .org/10.1063/1.1743957
  14. 14. Mishin Y. // Acta Mater. 2021. V. 214. P. 116980. https://doi .org/10.1016/j.actamat.2021.116980
  15. 15. Alloy Theoretic Automated Toolkit (ATAT) // https://www.brown.edu/Departments/Engineering/Labs/avdw/atat/ (ссылка активна на 16.02.2024).
  16. 16. The Vienna Ab initio Simulation Package: atomic scale materials modelling from first principles // https://www.vasp.at/ (ссылка активна на 16.02.2024).
  17. 17. Wang H., Zhang L., Han J., E W. // Comput. Phys. Commun. 2018. V. 228. P. 178–184. https://doi .org/10.1016/j.cpc.2018.03.016
  18. 18. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865–3868. https://doi .org/10.1103/PhysRevLett.77.3865
  19. 19. Zhang L., Han J., Wang H., Saidi W.A., Car R., E W. End-to-End Symmetry Preserving Inter-Atomic Potential Energy Model for Finite and Extended Systems. In: Advances in Neural Information Processing Systems. V. 31. Curran Associates, Inc., 2018. Montréal, Canada. P. 4436–4446.
  20. 20. Thompson A.P., Aktulga H.M., Berger R., Bolintineanu D.S., Brown W.M., Crozier P.S., In ‘T Veld P.J., Kohlmeyer A., Moore S.G., Nguyen T.D., Shan R., Stevens M.J., Tranchida J., Trott C., Plimpton S.J. // Comput. Phys. Commun. 2022. V. 271. P. 10817. https://doi .org/10.1016/j.cpc.2021.108171
  21. 21. Zhang Q., Zhang J., Li N., Chen W. // J. Appl. Phys. 2019. V. 126. P. 025101. https://doi .org/10.1063/1.5094580
  22. 22. Ge H., Cui C., Song H., Tian F. // Metals. 2021. V. 11. № 9. P. 1399. https://doi .org/10.3390/met11091399
  23. 23. Braic V., Vladescu A., Balaceanu M., Luculescu C., Braic M. // Surf. Coat. Technol. 2012. V. 211. P. 117–121. https://doi.org/10.1016/j.surfcoat.2011.09.033
  24. 24. Chicardi E., García-Garrido C., Hernández-Saz J., Gotor F.J. // Ceram. Int. 2020. V. 46. № 13. P. 21421–21430. https://doi .org/10.1016/j.ceramint.2020.05.240
  25. 25. Yang Y., Wang W., Gan G.-Y., Shi X.-F., Tang B.-Y. // Physica B: Condens. Matter. 2018. V. 550. P. 163–170. https://doi .org/10.1016/j.physb.2018.09.014
  26. 26. Akrami S., Edalati P., Fuji M., Edalati K. // Mater. Sci. Eng., R. 2021. V. 146. P. 100644. https://doi .org/10.1016/j.mser.2021.100644
  27. 27. Harrington T., Gild, J., Sarker P., Toher C., Rost C., Dippo O., McElfresh C., Kaufmann K., Marin E., Borowski L., Hopkins P., Luo J., Curtarolo S., Brenner D., Vecchio K. // Acta Mater. 2019. V. 166. P. 271–280. https://doi .org/10.1016/j.actamat.2018.12.054
  28. 28. Moskovskikh D.O., Vorotilo S., Sedegov, A.S., Kuskov K.V., Bardasova K.V., Kiryukhantsev-Korneev P.V., Zhukovskyi M., Mukasyan A.S. // Ceram. Int. 2020. V. 46. P. 19008–19014. https://doi .org/10.1016/j.ceramint.2020.04.230
  29. 29. Dai F.-Z., Wen B., Sun Y., Xiang H., Zhou Y. // J. Mater. Sci. Technol. 2020. V. 43. P. 168–174. https://doi .org/10.1016/j.jmst.2020.01.005
  30. 30. Hirel P. // Comput. Phys. Commun. 2015. V. 197. P. 212–219. https://doi .org/10.1016/j.cpc.2015.07.012
  31. 31. Zhang Y., Wang H., Chen W., Zeng J., Zhang L., Wang H., E W. // Comput. Phys. Commun. 2020. V. 253. P. 107206. https://doi .org/10.1016/j.cpc.2020.107206
  32. 32. Lennard-Jones J.E. // Proc. Phys. Soc. 1931. V. 43. № 5. P. 461–482. https://doi .org/10.1088/0959-5309/43/5/301
  33. 33. Becton M., Wang X. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 21894–21901. https://doi .org/10.1039/c5cp03460d
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library