- Код статьи
- 10.31857/S2686953524020014-1
- DOI
- 10.31857/S2686953524020014
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 515 / Номер выпуска 1
- Страницы
- 3-17
- Аннотация
- Электрохимические сенсоры весьма перспективны для анализа целого ряда органических и неорганических соединений как в биологических жидкостях, так и природных водах в ходе экологического мониторинга благодаря простоте эксплуатации, легкости миниатюризации, дешевизне, низким пределам определения аналита и возможностью модификации электродов широким спектром органических и неорганических соединений и наноматериалов. Однако обрастание электродов ограничивает применение электрохимических сенсоров. Основным способом решения данной проблемы является модификация электрода противообрастающими покрытиями. При этом, в зависимости от области применения, к противообрастающим покрытиям предъявляются различные дополнительные требования, такие как, например, биосовместимость или механическая прочность. В данном обзоре рассмотрены различные типы противообрастающих покрытий для сенсоров, указаны основные области применения тех или иных покрытий. Акцент сделан на безбиоцидные покрытия как наиболее перспективные.
- Ключевые слова
- электрохимический сенсор обрастание противообрастающие покрытия биосенсор
- Дата публикации
- 18.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 2
Библиография
- 1. Будников Г.К., Майстренко В.Н., Вяселев М.Р. Основы современного электрохимического анализа. М.: Мир: Бином Л3, 2003. 592 с.
- 2. Baranwal J., Barse B., Gatto G., Broncova G., Kumar A. // Chemosensors. 2022. V. 10. № 9. P. 363. https://doi.org/10.3390/chemosensors10090363
- 3. Zhou L., Li X., Zhu B., Su B. // Electroanalysis. 2022. V. 34. № 6. P. 966–975. https://doi.org/10.1002/elan.202100406
- 4. Figueroa-Miranda G., Wu C., Zhang Y., Nörbelet L., Lo Y., Tanner J.A., Elling L., Offenhäusser A., Mayer D. // Bioelectrochemistry. 2020. V. 136. 107589. https://doi.org/10.1016/j.bioelechem.2020.107589
- 5. Lu H., He B., Gao B. // Eng. Regeneration. 2021. V. 2. P. 175–181. https://doi.org/10.1016/j.engreg.2021.12.002
- 6. Han R., Wang G., Xu Z., Zhang L., Li Q., Han Y., Luo X. // Biosen. Bioelectron. 2020. V. 164. 112317. https://doi.org/10.1016/j.bios.2020.112317
- 7. Caratelli V., Ciampaglia A., Guiducci J., Guiducci J., Sancesario G., Moscone D., Arduini F. // Biosens. Bioelectron. 2020. V. 165. 112411. https://doi.org/10.1016/j.bios.2020.112411
- 8. Lakard S., Pavel I.-A., Lakard B. // Biosensors. 2021. V. 11. № 6. 179. https://doi.org/10.3390/bios11060179
- 9. Puthongkham P., Venton B.J. // ACS Sensors. 2019. V. 4. № 9. P. 2403–2411. https://doi.org/10.1021/acssensors.9b00994
- 10. Vadgama P. // Sensors. 2020. V. 20. № 11. 3149. https://doi.org/10.3390/s20113149
- 11. Campuzano S., Pedrero M., Yáñez-Sedeño P., Pingarrón J.M. // Int. J. Mol. Sci. 2019. V. 20. № 2. 423. https://doi.org/10.3390/ijms20020423
- 12. Qui H., Feng K., Gapeeva A., Meurisch K., Kaps S., Li X., Yu L., Mishra Y.K., Adelung R., Baum M. // Prog. Polym. Sci. 2022. V. 127. 101516. https://doi.org/10.1016/j.progpolymsci.2022.101516
- 13. Bauer M., Duerkop A., Baeumner A.J. // Anal. Bioanal. Chem. 2023. V. 415. P. 83–95. https://doi.org/10.1007/s00216-022-04363-2
- 14. Jin H., Tian L., Bing W., Zhao J., Ren L. // Prog. Mater. Sci., 2022, V. 124, 100889. https://doi.org/10.1016/j.pmatsci.2021.100889
- 15. Piehler J., Brecht A., Valiokas R., Liedberg B., Gauglitz G. // Biosens. Bioelectron. 2000. V. 15. № 9–10. P. 473–481. https://doi.org/10.1021/acs.nanolett.0c03756
- 16. M. Li, Jiang Sh., Simon J., Paßlick D., Frey M.-L., Wagner M., Mailänder V., Crespy D., Landfester K. // Nano Lett. 2021. V. 21. № 4. P. 1591–1598. https://doi.org/10.1021/acs.nanolett.0c03756
- 17. Yang W., Zhou F. // Biosurface and Biotribology. 2017. V. 3. № 3. P. 97–114. https://doi.org/10.1016/j.bsbt.2017.10.001
- 18. Choi Y., Tran H.-V., Lee T.R. // Coatings. 2022. V. 12. № 10. 1462. https://doi.org/10.3390/coatings12101462
- 19. Jiménez-Pardo I., Van der Ven L.G.J., Van Benthem R.A.T.M., De With G., Esteves A.C.C. // Coatings. 2018. V. 8. № 5. 184. https://doi.org/10.3390/coatings8050184
- 20. Wu J.-G., Chen J.-H., Liu K.-T., Luo S.-C. // Appl. Mater. Interfaces. 2019. V. 11. № 24. P. 21294–21307. https://doi.org/10.1021/acsami.9b04924
- 21. Delgado A., Briciu-Burghina C., Regan F. // Sensors, 2021. V. 21. № 2. 389. https://doi.org/10.3390/s21020389
- 22. Nien P.-C., Tung T.-S., Ho K.-C. // Electroanalysis. 2006. V. 18. № 13–14. P. 1408–1415. https://doi.org/10.1002/elan.200603552
- 23. Gao N., Yu J., Tian Q., Shi J., Zhang M., Chen Sh., Zang L. // Chemosensors. 2021. V. 9. № 4. 79. https://doi.org/10.3390/chemosensors9040079
- 24. Hsu C.-C., Liu T.-Y., Peng X.-Y., Cheng Y.-W., Lin Y.-R., Yang M.-C., Huang L.-Y., Liu K.-H., Yung M.-C. // Surf. Coat. Technol. 2020. V. 397. № 15. 125963. https://doi.org/10.1016/j.surfcoat.2020.125963
- 25. Benoudjit A., Bader M.M., Salim W.W.A.W. // Sens. Bio-Sens. Res. 2018. V. 17. P. 18–24. https://doi.org/10.1016/j.sbsr.2018.01.001
- 26. Yang X., Chen P., Zhang Xi, Zhou H., Song Z., Yang W., Luo X. // Anal. Chim. Acta. 2023. V. 1252. 341075. https://doi.org/10.1016/j.aca.2023.341075
- 27. Singha P., Locklin J., Handa H. // Acta Biomater. 2017. V. 50. P. 20–40. https://doi.org/10.1016/j.actbio.2016.11.070
- 28. Lin C.-H., Luo S.-C. // Langmuir. 2022. V. 38. № 24. P. 7383–7399. https://doi.org/10.1021/acs.langmuir.2c00448
- 29. Chen X., Noy A. // APL Mater. 2021. V. 9. № 2. 020701. https://doi.org/10.1063/5.0029994
- 30. Chen S., Li L., Zheng J. // Polymer. 2010. V. 51. V. 23. P. 5283–5293. https://doi.org/10.1016/j.polymer.2010.08.022
- 31. Regev C., Jiang Z., Kasher R., Miller Y. // Molecules, 2022. V. 27. № 21. 7394. https://doi.org/10.3390/molecules27217394
- 32. Jayakumar K., Lielpetere A. Domingo-Lopez D.A., Levey R.E., Duffy G.P., Schuhmann W., Leech D. // Biosens. Bioelectron. 2023. V. 219. 114815. https://doi.org/10.1016/j.bios.2022.114815
- 33. Klukova L., Bertok T., Petrikova M., Sediva A., Mislovicova D., Katrlik J., Vikartovska A., Filip J., Kasak P., Andicsová-Eckstein A., Mosnáček J., Lukáč J., Rovenský J., Imrich R., Tkac J. // Anal. Chim. Acta. 2015. V. 853. P. 555–562. https://doi.org/10.1016/j.aca.2014.10.029
- 34. Bertok T., Klukova L., Sediva A., Kasák P., Semak V., Micusik M., Omastova M., Chovanová L., Vlček M., Imrich R., Vikartovska A., Tkac J. // Anal. Chem. 2013. V. 85. № 15. P. 7324–7332. https://doi.org/10.1021/ac401281t
- 35. Bertok T., Dosekova E., Belicky S., Holazova A., Lorencova L., Mislovicova D., Paprckova D., Vikartovska A., Plicka R., Krejci J., Ilcikova M., Kasak P., Tkac J. // Langmuir. 2016. V. 32. № 28. P. 7070–7078. https://doi.org/10.1021/acs.langmuir.6b01456
- 36. Tan D., Li F., Zhou B. Int. J. // Electrochem. Sci. 2020. V. 15. № 9. P. 9446–9458. https://doi.org/10.20964/2020.09.56
- 37. Li Y., Zhao S., Xu Z., Qiao X., Li M., Li Y., Luo X. // Biosens. Bioelectron. 2023. V. 225. 115101. https://doi.org/10.1016/j.bios.2023.115101
- 38. Chungprempree J., Preechawong J., Nithitanakul M. // Polymers. 2022. V. 14. № 20. 4252. https://doi.org/10.3390/polym14204252
- 39. Janczarek M., Hupka J., Kisch H. // Physicochem. Probl. Miner. Process. 2006. V. 40. P. 287–292.
- 40. Chen Y., Liu B., Chen Z., Zuo X. // Anal. Chem. 2021. V. 93. № 30. P. 10635–10643. https://doi.org/10.1021/acs.analchem.1c01973
- 41. Patel J., Zhao B., Uppalapati B., Daniels R.C., Ward K.R., Collinson M.M. // Anal. Chem. 2013. V. 85. № 23. P. 11610–11618. https://doi.org/10.1021/ac403013r
- 42. Matharu Z., Daggumati P., Wang L., Dorofeeva T.S., Li Z., Seker E. // ACS Appl. Mater. Interfaces. 2017. V. 9. № 15. P. 12959–12966. https://doi.org/10.1021/acsami.6b15212
- 43. Summerlot D., Kumar A., Das S., Goldstein L., Seal S., Diaz D., Cho H.J. // Procedia Engineering. 2011. V. 25. P. 1457–1460. https://doi.org/10.1016/j.proeng.2011.12.360
- 44. Chu Y., Zhou H., Wang X., Zhang H., Zhao L., Xu T., Yan H., Zhao F. // Microchem. J. 2023. V. 186. 108259. https://doi.org/10.1016/j.microc.2022.108259
- 45. Guo J., Liu X., Wang A., Yu X., Ding L. // Microchem. J. 2022. V. 183. 107964. https://doi.org/10.1016/j.microc.2022.107964
- 46. Goux A., Etienne M., Aubert E., Lecomte C., Ghanbaja J., Walcariusn A. // Chem. Mater. 2009. V. 21. № 4. P. 731–741. https://doi.org/10.1021/cm8029664
- 47. Walcariu A., Sibottier E., Etienne M., Ghanbaja J. // Nat. Mater. 2007. V. 6. № 8. P. 602–608. https://doi.org/10.1038/nmat1951
- 48. Huang J., Zhang T., Dong G., Zhu S., Yan F., Liu J. // Front. Chem. 2022. V. 10. 900282. https://doi.org/10.3389%2Ffchem.2022.900282
- 49. Huang J., Zhang T., Dong G., Zhu S., Yan F., Liu J. // Front. Chem., Sec. Analytical Chemistry. –2022. – Volume 10, 900282. https://doi.org/10.3389%2Ffchem.2022.900282
- 50. Verger L., Xu C., Natu V., Cheng H.-M., Ren W., Barsoum M.W. // Curr. Opin. Solid State Mater. Sci. 2019. V. 23. № 3. P. 149–163.
- 51. Babar Z.U.D., Ventura B.D., Velotta R., Iannotti V. // RSC Adv. 2022. V. 12. P. 19590–19610. https://doi.org/10.1039/D2RA02985E
- 52. Сметкин А.В., Майорова Ю.К. Вестник ПНИПУ. Машиностроение, материаловедение. 2015. Т. 17. № 4. С. 120–138. https://doi.org/10.15593/2224–9877/2015.4.09
- 53. Singh C., Höfs S., Konthur Z., Hodoroaba V.-D., Radnik J., Schenk J.A., Schneider R.J. // ACS Appl. Eng. Mater. 2023. V. 1. P. 495–507. https://doi.org/10.1021/acsaenm.2c00118
- 54. Lorencova L., Sadasivuni K.K., Kasak P., Tkac J. Ti3C2 MXene-Based Nanobiosensors for Detection of Cancer Biomarkers. In: Novel Nanomaterials. Krishnamoorthy K. (ed.). IntechOpen, 2021. https://doi.org/10.5772/intechopen.94309
- 55. Yu R., Xue J., Wang Y., Qiu J., Huang X., Chen A., Xue J.J. // Nanobiotechnol. 2022. V. 20. 119. https://doi.org/10.1186%2Fs12951-022-01317-9
- 56. Krishnamoorthy R., Muthumalai K., Nagaraja T., Rajendrakumar R.T., Das S.R. // ACS Omega. 2022. V. 10. V. 7. № 46. P. 42644–42654. https://doi.org/10.1021/acsomega.2c06505
- 57. Wu L., Lu X., Dhanjai, Wu Z.-S., Dong Y., Wan X., Zheng S., Chene J. // Biosens. Bioelectron. 2018. V. 107. P. 69–75. https://doi.org/10.1016/j.bios.2018.02.021
- 58. Rhouati A., Berkani M., Vasseghian Y., Golzadeh N. // Chemosphere. 2022. V. 291. 132921. https://doi.org/10.1016/j.chemosphere.2021.132921
- 59. Cheng H., Yang J. // Int. J. Electrochem. Sci. 2020. V. 15. V. 3. P. 2295–2306. https://doi.org/10.20964/2020.03.24
- 60. Yang M., Wang L., Lu H., Dong Q. // Micromachines, 2023. V. 14. № 5. 1088. https://doi.org/10.3390/mi14051088
- 61. Mehmandoust M., Li. G., Erk N. // Ind. Eng. Chem. Res. 2023. V. 62. V. 11. P. 4628–4635. https://doi.org/10.1021/acs.iecr.2c03058
- 62. Kanoun O., Lazarević-Pašti T., Pašti I., Nasraoui S., Talbi M., Brahem A., Adiraju A., Sheremet E., Rodriguez R.D., Ali M.B., Al-Hamry A. // Sensors. 2021. V. 21. № 12. 4131. https://doi.org/10.3390/s21124131
- 63. Peltola E., Sainio S., Holt K.B., Palomäki T., Koskinen J., Laurila T. // Anal. Chem. 2018. V. 90. № 2. P. 1408–1416. http://dx.doi.org/10.1021/acs.analchem.7b04793
- 64. Medyantseva E.P., Gazizullina E.R., Brusnitsyn D.V., Ziganshin M.A., Mustafina A.R., Elistratova J.G., Brylev K.A., Budnikov H.C. // Anal. Lett. 2022. V. 55. № 11. P. 1757–1770. https://doi.org/10.1080/00032719.2021.2025384
- 65. Zahran M., Khalifa Z., Zahrana M.A.-H., Azzema M.A. // Mater. Adv. 2021. V. 2. P. 7350–7365. https://doi.org/10.1039/D1MA00769F
- 66. Ren J., Han P., Wei H., Jia L. // ACS Appl. Mater. Interfaces. 2014. V. 6. № 6. P. 3829–3838. https://doi.org/10.1021/am500292y
- 67. Ensafi A.A., Zandi-Atashbar N., Rezaei B., Ghiaci M., Chermahinia M.E., Moshiri P. // RSC Adv. 2016. V. 6. P. 60926–60932. https://doi.org/10.1039/C6RA10698F
- 68. Lotfi Z., Gholivand M.B., Shamsipur M., Mahin mirzaei // J. Alloys Compd. 2022. V. 903. 163912. https://doi.org/10.1016/j.jallcom.2022.163912
- 69. Bek F., Loessl M., Baeumner A.J. // Microchim. Acta. 2023. V. 190. 91. https://doi.org/10.1007/s00604–023–05666–6
- 70. Yu T., Glennon L., Fenelon O., Breslin C.B. // Talanta. 2023. V. 251. 123758. https://doi.org/10.1016/j.talanta.2022.123758