- PII
- 10.31857/S2686953524030046-1
- DOI
- 10.31857/S2686953524030046
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 516 / Issue number 1
- Pages
- 30-38
- Abstract
- An applied kinetic model has been developed for processing DSC peaks of transitions between states, determining the temperature–time dependence of the degree of transition and combining the fundamental theory of Kolmogorov–Johnson–Mehl crystallization, simplified for practice, with the semi-empirical Erofeev model. In the development of this applied model, the concept of a “thermodynamic factor” is introduced, which allows a transition in the kinetics of phase transformations of condensed matter. The application of the new approach is demonstrated by the example of studying the dependences of temperature and enthalpy of fusion on the average atomic mass of stable germanium isotopes, data on which, as new chemical individuals, are of a fundamental nature and can serve as reference information.
- Keywords
- термоанализ прикладная теория кристаллизации Колмогорова–Джонсона–Мейла плавление изотопов германия
- Date of publication
- 18.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 6
References
- 1. Gabbott P.L. Principles and Applications of Thermal Analysis. 1st edn. Blackwell Publishing Ltd., 2008. P. 484. https://doi.org/10.1002/9780470697702
- 2. Jackson K.A. Kinetic processes crystal growth, diffusion, and phase transitions in materials. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004. p. 426.
- 3. Хеммингер В., Хене Г. Калориметрия. Теория и практика. Пер. с англ. М.: Химия, 1990. с. 176.
- 4. Borchard H.J., Daniels F. // J. Am. Chem. Soc. 1957. V. 79. P. 41–46 https://doi.org/10.1021/ja01558a009
- 5. Колмогоров А.Н. // Изв. АН СССР. Сер. матем. Т. 1937. № 3. С. 355—359.
- 6. Johnson W.A., Mehl R.F. // Trans. AIME. 1939. V. 135. P. 416–442.
- 7. Беленький В.З. Геометрико-вероятностные модели кристаллизации. М.: Наука, 1980. с. 88.
- 8. Sestaik J., Berggren G. // Thermochim. Acta. 1971. V. 3. Р. 1–12. https://doi.org/10.1016/0040-6031 (71)85051-7
- 9. Янг Д. Кинетика разложения твердых веществ. Пер. с англ. М.: Мир, 1969. с. 263.
- 10. Лифшиц Е.М., Питаевский Л.П. Физическая кинетика, М.: Физматлит, 2001. Т. 10. с. 536.
- 11. Kut’in A.M., Plekhovich A.D., Balueva K.V., Sukhanov M.V., Evdokimov I.I. // J. Non-Cryst. Solids. 2022. V. 582. 121440. https://doi.org/10.1016/j.jnoncrysol.2022.121440
- 12. Кутьин А.М., Плехович А.Д., Суханов М.В., Балуева К.В. // Неорг. матер. 2019. Т. 55. № 10. С. 1101–1107. https://doi.org/10.1134/S0020168519080053
- 13. Кутьин А.М., Плехович А.Д., Дорофеев В.В. // Неорг. матер. 2016. Т. 52. № 6. С. 656–663. https://doi.org/10.7868/S0002337X16060063
- 14. Франк-Каменецкий Д.А. Диффузия и теплопередача в химической кинетике. М.: Наука, 1987. с. 502.
- 15. Кубо Р. Термодинамика. Пер. с англ. М: Мир, 1970. С. 264.
- 16. Berglund M., Wieser M.E. // Pure Appl. Chem. 2011. V. 83. № 2. P. 397–410. http://dx.doi.org/10.1351/PAC-REP-10-06-02
- 17. Churbanov M.F., Gavva V.A., Bulanov A.D., Abrosimov N.V., Kozyrev E.A., Andryushchenko I.A., Lipskii V.A., Adamchik S.A., Troshin O.Yu., Lashkov A.Yu., Gusev A.V. // Cryst. Res. Technol. 2017. V. 52. № 4. P. 1700026. https://doi.org/10.1002/crat.201700026
- 18. Gavva V.A., Bulanov A.D., Kut’in A.M., Plekhovich A.D., Churbanov M.F. // Phys. B Cond. Matter. 2018. V. 537. P. 12–14. https://doi.org/10.1016/j.physb.2018.01.056