Президиум РАНДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

Структура гуматов в водных растворах и их биологическая активность

Код статьи
10.31857/S2686953524030057-1
DOI
10.31857/S2686953524030057
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 516 / Номер выпуска 1
Страницы
39-44
Аннотация
Известно, что гуминовые вещества (ГВ) формируют из частиц-молекул (первичных частиц ГВ) надмолекулярные образования (НМО). Позже было показано, что существует барьерная концентрация ГВ, ниже которой в растворе гуминовых веществ последние находятся только в виде частиц-молекул, а при концентрации, превышающей барьерную – только в виде НМО. Из этого следует, что свойства растворов ГВ должны определяться тем, в каком виде (частиц-молекул или НМО) находятся в растворах ГВ. Целью исследования была проверка влияния формы существования ГВ в растворах на свойства этих растворов и их биологическую активность. В работе использовали растворы гумата калия из бурого угля. Результаты экспериментов показали, что при увеличении концентрации гуматов рН скачкообразно увеличивается в диапазоне 30−50 мг л⁻¹. Установлено, что при культивировании некоторых видов микроорганизмов в питательных средах, приготовленных на растворах гуматов, микроорганизмы развивались намного активнее при нахождении в питательных средах ГВ в виде частиц-молекул. Также показано, что при фолиарной обработке побегов огурца растворами гуматов с концентрацией ниже барьерной эффект стимуляции возрастал. По-видимому, увеличение стимуляции связано с тем, что частицы-молекулы из-за малого размера могли поглощаться клетками растений.
Ключевые слова
надмолекулярные образования гуминовых веществ барьерная концентрация гуминовых веществ рН растворов гуматов пленки растворов гуминовых веществ фолиарная обработка огурцов
Дата публикации
18.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
2

Библиография

  1. 1. Орлов Д.С. Гумусовые кислоты почв и общая теория гумификации. М.: Изд-во МГУ, 1990. с. 325.
  2. 2. Österberg R., Mortensen K. // Eur. Biophys. J. 1992. V. 21. № 3. P. 163–167. https://doi.org/10.1007/BF00196759
  3. 3. Angelico R., Colombo C., Di Iorio E., Brtnický M., Fojt J., Conte P. // Appl. Sci. 2023. V. 13. № 4. 2236. https://doi.org/10.3390/app13042236
  4. 4. Senesi N., Wilkinson K.J. Biophysical chemistry of fractal structures and processes in environmental systems. Senesi N., Wilkinson K.J. (Eds.). John Wiley & Sons Ltd., 2008. p. 342.
  5. 5. Федотов Г.Н., Шеин Е.В., Ушкова Д.А., Салимгареева О.А., Горепекин И.В., Потапов Д.И. // Почвоведение. 2023. № 8. С. 903–908. https://doi.org/10.31857/S0032180X22601608
  6. 6. Милановский Е.Ю. Гумусовые вещества почв как природные гидрофобно-гидрофильные соединения. М.: ГЕОС. 2009. с. 186.
  7. 7. Nardi S., Pizzeghello D., Muscolo A., Vianello A. // Soil Biol. Biochem. 2002. V. 34. №. 11. P. 1527–1536. https://doi.org/10.1016/S0038-0717 (02)00174-8
  8. 8. Asli S., Neumann P.M. // Plant Soil. 2010. V. 336. P. 313–322. https://doi.org/10.1007/s11104-010-0483-2
  9. 9. Scherrer R., Louden L., Gerhardt P. // J. Bacteriol. 1974. V. 118. № 2. P. 534–540. https://doi.org/10.1128/jb.118.2.534-540.1974
  10. 10. De Nobel J.G., Barnett J.A. // Yeast. 1991. V. 7. № 4. P. 313–323. https://doi.org/10.1002/yea.320070402
  11. 11. Visser S.A. // Soil Biol. Biochem. 1985. V. 17. № 4. P. 457–462. https://doi.org/10.1016/0038-0717 (85)90009-4
  12. 12. Fasurová N., Čechlovská H., Kučerik J. // Pet. Coal. 2006. V. 48. № 2. P. 24–32.
  13. 13. Евдокимов И.П., Лосев А.П. Природные нанообъекты в нефтегазовых средах. М.: РГУ нефти и газа им. И.М. Губкина, 2008. с. 104.
  14. 14. Arachchige M.S.A., Mizutani O., Toyama H. // Biotechnol. Biotechnol. Equip. 2019. V. 33. № 1. P. 1505–1515. https://doi.org/10.1080/13102818.2019.1676167
  15. 15. Spaccini R., Piccolo A., Conte P., Haberhauer G., Gerzabek M.H. // Soil Biol. Biochem. 2002. V. 34. № 12. P. 1839–1851. https://doi.org/10.1016/S0038-0717 (02)00197-9
  16. 16. Воюцкий С.С. Курс коллоидной химии. М.: Химия, 1975. с. 512.
  17. 17. Sampaio J.P. // Can. J. Microbiol. 1999. V. 45. № 6. P. 491–512. https://doi.org/10.1139/w99-020
  18. 18. Tikhonov V.V., Yakushev A.V., Zavgorodnyaya Y.A., Byzov B.A., Demin V.V. // Eurasian Soil Sci. 2010. V. 43. P. 305–313. https://doi.org/10.1134/S1064229310030087
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека