- PII
- 10.31857/S2686953524060043-1
- DOI
- 10.31857/S2686953524060043
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 519 / Issue number 1
- Pages
- 25-31
- Abstract
- In this paper, there is consideration of a model of the dependence of in-plane shear modulus of the carbon fiber reinforced plastics on the time spent in thermally humid conditions is considered. This study is based on the Academician V.M. Buznik’s ideas of the effect of molecular transformations in polymer matrix on their macroscopic properties. The moisture transfer kinetics and changes of the in-plane shear modulus of the carbon fiber reinforced plastics during drying and humidification at 60°C have been investigated. Fick’s second law was used to approximate the dependence of the shear modulus on time, because of the dependence of mechanical properties on moisture content, which is commonly modeling by this law.
- Keywords
- углепластик модуль сдвига диффузия влагосодержание моделирование
- Date of publication
- 18.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 6
References
- 1. Buznik V.M., Kablov E.N. // Her. Russ. Acad. Sci. 2017. V. 87. № 5. P. 397–408. https://doi.org/10.1134/S101933161705001X
- 2. Бузник В.М., Каблов Е.Н. Арктическое материаловедение. Томск: Издательский дом Томского государственного университета, 2018. 44 с.
- 3. Старцев В.О., Антипов В.В., Славин А.В., Горбовец М.А. // Авиационные материалы и технологии. 2023. № 2 (71). С. 122–144. https://doi.org/10.18577/2713-0193-2023-0-2-122-144
- 4. Shvedkova A.K., Petrova A.P., Buznik V.M. // Polym. Sci. Ser. D. 2016. V. 9. № 2. P. 165–171. https://doi.org/10.1134/S1995421216020210
- 5. Lebedev M.P., Startsev O.V. // Russ. Chem. Bull. 2023. V. 72. № 2. P. 553–565. https://doi.org/10.1007/s11172-023-3819-1
- 6. Kablov E.N., Kirillov V.N., Startsev O.V., Krotov A.S. // Russ. Metall. 2012. V. 2012. № 4. P. 323–329. https://doi.org/10.1134/S0036029512040040
- 7. Hussnain S.M., Shah S.Z.H., Megat-Yusoff P.S.M., Hussain M.Z. // Polym. Degrad. Stab. 2023. V. 215. № 1. P. 110452–110460. https://doi.org/10.1016/j.polymdegradstab.2023.110452
- 8. Shreepannaga, Vijaya Kini M., Pai D. // Mater. Today: Proc. 2022. V. 52. P. 689–696. https://doi.org/10.1016/j.matpr.2021.10.084
- 9. Ahmed F., Mhamdia R., Mohammed S.M.A.K., Benyahia F., Albedah A., Bouiadjra B.A.B. // Sci. Eng. Compos. Mater. 2024. V. 31. № 1. P. 20220235–20220246. https://doi.org/10.1515/secm-2022-0235
- 10. Quino G., Tagarielli V.L., Petrinic N. // Compos. Sci. Technol. 2020. V. 199. P. 108316. https://doi.org/10.1016/j.compscitech.2020.108316
- 11. Shetty K., Bojja R., Srihari S. // Adv. Compos. Lett. 2020. V. 29. P. 1–9. https://doi.org/10.1177/2633366x20926520
- 12. Liu X., Su Q., Zhu J., Song X. // Polymers. 2023. V. 15. № 1. P. 2490–2509. https://doi.org/10.3390/polym15112490
- 13. Yang S., Chu M., Chen F., Fu M., Lv Y., Xiao Z., Feng N., Song Y., Li J. // Front. Mater. 2022. V. 9. P. 862872–862886. https://doi.org/10.3389/fmats.2022.862872
- 14. Levine H., Slade L. // Water Sci. Rev. 1988. V. 3. No. 1. P. 79–185. https://doi.org/10.1017/CBO9780511552083.002
- 15. Nandagopal R.A., Boay C.G., Narasimalu S. // Compos. Struct. 2020. V. 236. P. 111876–111892. https://doi.org/10.1016/j.compstruct.2020.111876
- 16. Gao C., Zhou C. // J. Mater. Sci. 2019. V. 54. № 11. P. 8289–8301. https://doi.org/10.1007/s10853-019-03399-7
- 17. Bone J.E., Sims G.D., Maxwell A.S., Frenz S., Ogin S.L., Foreman C., Dorey R.A. // J. Compos. Mater. 2022. V. 56. № 14. P. 2189–2199. https://doi.org/10.1177/00219983221091465
- 18. Crank J. The mathematics of diffusion. 2nd edn. Clarendon press, Oxford, 1975. 414 p.
- 19. Куцевич К.Е., Дементьева Л.А., Лукина Н.Ф. // Труды ВИАМ. 2016. № 8 (44). С. 52–59. https://doi.org/10.18577/2307-6046-2016-0-8-7-7
- 20. Startsev O.V., Kornienko G.V., Gladkikh A.V., Gorbovets M.A. // Polym. Sci. Ser. D. 2024. V. 17. № 3. P. 606–614. https://doi.org/10.1134/S1995421224701041