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Матрицы на основе неорганических фторидов привлекают внимание исследователей для создания 
эффективных люминофоров. В настоящей работе впервые методом кристаллизации фторидов из рас-
твора в расплаве NaNO3 получены флюоритоподобные фазы состава Ba1–xLnxF2+x с содержанием LnF3 
около 40 мол. % (Ln = La–Lu). Показано, что побочным продуктом синтеза является BaF2, который в 
процессе промывки образцов водой растворяется и удаляется из системы. Установлено, что для РЗЭ 
цериевой подгруппы в условиях синтеза образуется твердый раствор с кубической структурой типа 
флюорита. Отмечено вхождение натрия в состав образцов для Ln = Gd–Lu. Установлено, что фор-
мирование тригональных флюоритоподобных фаз со структурой Ba4Ln3F17 происходит при синтезе 
только для Ln с малыми ионными радиусами (Tm–Lu). Для промежуточных по размеру ионов РЗЭ 
(Gd–Ho) формируются флюоритоподобные тетрагональные фазы, демонстрирующие на дифракто-
граммах слабые сверхструктурные рефлексы. Полученные матрицы можно рассматривать в качестве 
перспективных материалов для создания антистоксовых люминофоров и оптических термометров.
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ВВЕДЕНИЕ
Флюоритовые твердые растворы M1–хLnхF2+х, 

где M – щелочноземельный металл, Ln – ланта-
ноиды, активно изучаются на протяжении уже 
более 100 лет после открытия минерала иттро-
флюорита [1]. К этим объектам вполне примени-
мо высказывание Ричарда Фейнмана: “В стекле 
можно увидеть всю Вселенную, если достаточно 
глубоко в него заглянуть” [2]. Механизм образо-
вания, фазовые равновесия, особенности несте-
хиометрии, закономерности кристаллизации, 
переходы порядок–беспорядок – все это при-
влекает внимание исследователей [3–14]. Ввиду 
наличия дальнего порядка при локальном раз-
упорядочении для таких объектов предложено 

использовать термин “антистекла” [15]. Понятие 
“антистекло” введено в работе [16] для обозна-
чения кристаллических разупорядоченных фаз, 
обладающих существенным локальным беспо-
рядком при наличии дальнего порядка, в отличие 
от стекол, в которых отсутствует дальний поря-
док при наличии ближнего и среднего. Близость 
физических свойств стекол и антистекол (вы-
сокая ионная проводимость, низкая теплопро-
водность и т.д.) является примером реализации 
принципа эквивалентности источников бес-
порядка, выдвинутого Ю.Д. Третьяковым [17]. 
Антистекла являются “стеклоподобными” в том 
смысле, что им присущи структурное разупоря-
дочение и метастабильность [18]. Однако основ-
ное кардинальное отличие между стеклами (хаос 
с островками порядка) и антистеклами (порядок 
с островками хаоса) приводит и к существен-
ным отличиям между ними (легкоплавкость или 
тугоплавкость, высокая или низкая энтропия 
плавления, сильное или незначительное пере
охлаждение расплавов) [19]. 
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Твердые растворы M1–хLnхF2+х стали основой 
для создания многих функциональных мате-
риалов, таких как лазеры [20–22], сцинтилля-
торы [23–27], люминофоры [28–34], твердые 
электролиты [35–38] и т.д. Выяснение своео-
бразного строения этих объектов, определяю-
щего их свойства, потребовало привлечения 
разнообразных взаимодополняющих методов 
исследования, среди которых важную роль игра-
ет метод 19F ЯМР [39–43]. 

Целью данной работы является выяснение 
особенностей упорядочения твердых растворов 
Ba1–хLnхF2+х со структурой флюорита при их син-
тезе в расплаве нитрата натрия. Данное иссле-
дование продолжает цикл работ, посвященных 
синтезу фторидов из раствора в расплаве нитрата 
натрия [44, 45].

Выбор составов в данной работе обусловлен 
повышенным вниманием к твердым растворам 
Ba1–xLnxF2+x в связи с их высоким потенциалом 
для применения в качестве материалов для фо-
тоники и фтор-проводящих электролитов. Вы-
бор составов Ba0.67Ln0.33F2.33 связан с тем, что для 
Ln = Dy–Lu известно образование соединений 
Ba2LnF7 с кристаллической структурой тетра-
гонально-искаженного флюорита [46]. Однако 
в литературе существует большое количество 
работ с указанием на образование соедине-
ния для цериевой подгруппы РЗЭ, например, 
Ba2LaF7 [47], которые, по нашему мнению, оши-
бочно записывают именно в виде соединений, а 
не твердого раствора Ba1‑xLaxF2+x.

Как было установлено при исследовании фа-
зовых диаграмм BaF2–LnF3 [48], в этих системах 
твердые растворы со структурой типа флюори-
та при понижении температуры претерпевают 
упорядочение с формированием фаз Ba4Ln3F17 
тригональной сингонии. Расшифровка кристал-
лической структуры этих фаз [49] продемонстри-
ровала упорядоченное расположение кластеров 
Ln6F37 во флюоритовой матрице. Кроме того, 
Соболев и Ткаченко [48] установили существова-
ние в системах с Ln = Sm, Gd, Tb упорядоченных 
фаз с тетрагональным искажением флюоритовой 
ячейки, устойчивых в узком температурном ин-
тервале. Кисер и Грейс [50] в результате низко-
температурных отжигов кубических твердых рас-
творов Ba1–хLnхF2+х добились формирования фаз 
Ba4Ln3F17 для всех лантаноидов, за исключением 
лантана. Наши предварительные исследования 
показали, что при попытках низкотемператур-
ных синтезов твердых растворов Ba1–хLnхF2+х об-
разуются две фазы – практически чистый BaF2 и 
флюоритовые фазы, содержащие около 40 мол. % 

LnF3 без признаков упорядочения [9]. При пла-
нировании работы учитывалось, что BaF2 обла-
дает сравнительно высоким произведением рас-
творимости (ПР = 10–6) и при промывках водой 
микрочастицы фторида бария растворяются, что 
подтверждается микрофотографиями частиц 
(рис. 1). 

В настоящей работе предпринята попытка по-
лучения твердых растворов со структурой флюо-
рита Ba0.67Ln0.33F2.33 методом кристаллизации из 
раствора в расплаве нитрата натрия.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
Синтез образцов проводили по методике, ана-

логичной и описанной в работе [44], в глазуро-
ванных фарфоровых тиглях в муфельной печи с 
последующей промывкой бидистиллированной 
водой. Для синтеза образцов при температуре 
500°C и продолжительности изотермической 
выдержки 1  ч использовали стехиометрическое 
количество NaF и десятикратный мольный из-
быток NaNO3 относительно продукта реакции. 
Использовались следующие реактивы: NaF 
(“х.  ч.”, ЛАНХИТ), NaNO3 (“х.  ч.”, ХИММЕД), 
нитрат бария (“ос. ч.”, 10-2, РЕАХИМ), гидраты 
нитратов РЗЭ (чистота 99.99% по металлическим 
примесям, ЛАНХИТ), бидистиллированная вода.

Рентгенофазовый анализ (РФА) проводили 
на дифрактометре Bruker D8 Advance (Германия) 
с CuKα-излучением. Расчет параметров решетки 
проводили в программе TOPAS 4.2 (Rwp < 6.7, где 
Rwp – взвешенный профильный фактор сходимо-
сти). Микрофотографии порошков и данные о 
составе были получены на растровом электрон-
ном микроскопе (РЭМ) (Carl Zeiss NVision 40, 

2 мкм

Рис. 1. Микрофотография частиц фторида бария после 
промывки бидистиллированной водой.
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Германия) с энергодисперсионной приставкой 
(Oxford Instruments X-MAX 80 мм2) для рентгено-
спектрального микроанализа (РСМА).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
В результате синтеза была получена серия об-

разцов F1–F9, обозначения и характеристики 
которых приведены в табл. 1. Состав флюорито-
вого твердого раствора можно устанавливать по 
параметрам решетки с использованием концен-
трационных зависимостей a(x) [48]. Однако из-
за вхождения ионов Na+ в состав образцов кон-
центрационные зависимости могут претерпевать 
изменения, поэтому в настоящей работе исполь-
зованы данные РСМА. Результаты исследования 
представлены в табл. 1.

По данным РФА в образцах F1–F3 (Ln = La, 
Pr, Nd) до промывки содержится фаза BaF2 и 
фазы Ba1–xLnxF2+x, остальные рефлексы относят-
ся к NaNO3 (до промывки) (рис. 2). Образцы по-
сле промывки представляют собой однофазные 
твердые растворы Ba1–xLnxF2+x.

При этом фактическое содержание NdF3 в 
твердом растворе, по данным РСМА больше, 
чем номинальное содержание, и составляет 
36  мол.  %. Это указывает на удаление BaF2 из 
системы в ходе промывок (см. табл. 1). Для об-
разцов, содержащих другие лантаноиды, наблю-
дается аналогичный эффект.

Непосредственно после синтеза в исследован-
ных системах, согласно данным РФА, существу-
ют: фаза BaF2, флюоритоподобная фаза на осно-
ве BaF2 и избыток NaNO3. В процессе промывки 
водой BaF2 и NaNO3 растворяются и удаляются 
декантацией. В составе высушенных образцов, 
содержащих La, Pr и Nd, присутствует твердый 
раствор со структурой флюорита с увеличенным, 
относительно номинального, содержанием РЗЭ 
(рис. 3).

Таблица 1. Результаты РФА и составы по данным РСМА образцов F1–F9 (после промывки)

Образец РЗЭ Пр. гр. a, Å c, Å Состав (по данным РСМА)а

F1 La Fm-3m 6.082(1) – Ba0.60La0.40F2.40

F2 Pr Fm-3m 6.043(1) – Ba0.63Pr0.37F2.37

F3 Nd Fm-3m 6.025(1) – Ba0.64Nd0.36F2.36

F4 Gd I4 4.164(1) 5.946(1) Ba0.52Gd0.44Na0.04F2.40

F5 Tb I4 4.146(1) 17.792(2) Ba0.49Tb0.45Na0.06F2.39

F6 Ho I4 4.113(1) 17.701(1) Ba0.48Ho0.48Na0.04F2.44

F7 Tm R3 11.035(1) 20.334(1) Ba0.56Tm0.42Na0.02F2.40

F8 Yb R3 11.002(1) 20.296(1) Ba0.45Yb0.52Na0.03F2.49

F9 Lu R3 11.014(1) 20.197(2) Ba0.46Lu0.50Na0.04F2.46

а Относительная погрешность определения катионного состава ±1 мол. %.
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Рис. 2. Дифрактограммы образца F3 до и после промывки.
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В образцах, содержащих Ln  =  Gd–Lu, в 
осадке присутствует примесь натрия, и форму-
ла твердого раствора может быть записана как  
Ba1–x–yLnxNayF2+x–y. Также наблюдается измене-
ние кристаллической структуры твердого рас-
твора, появляются тетрагональные искажения 
кубической решетки (Ln  =  Gd–Ho), аналогич-
ные тем, что наблюдаются в фазе T в тройной 
системе NaF–BaF2–GdF3 [51]. Отметим, что те-
трагональные искажения решетки флюорита для 
системы BaF2–HoF3 наблюдаются впервые, и не 

были отмечены в исследовании Соболева и Тка-
ченко [48]. В ряду Ln = Tm–Lu происходит обра-
зование соединения со структурой Ba4Ln3F17 три-
гональной сингонии.

Полученные порошки состоят из хорошо за-
кристаллизованных частиц микронных и субми-
кронных размеров, имеющих выраженную огран-
ку. В образцах F3 и F4 наблюдается бимодальное 
распределение частиц по размерам (рис. 4а–г). 
Образец F7 содержит ромбоэдрические частицы 
субмикронных размеров (рис.  4д,е). Изменение 

(a)

(в)

(д)

(б)

(г)

(е)

1 мкм

1 мкм

1 мкм

1 мкм

1 мкм

1 мкм

Рис. 4. Микрофотографии РЭМ: образец F3 (Ln = Nd) в режимах топографического контраста (с использованием 
детектора вторичных электронов SE2) (а) и композиционного контраста (с использованием детектора обратно-отра-
женных электронов BSE) (б), образец F4 (Ln = Gd) в режимах топографического контраста (в) и композиционного 
контраста (г), образец F7 (Ln = Tm) в режимах топографического контраста (д) и композиционного контраста (е).
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габитуса и более узкое распределение частиц по 
размерам, очевидно, связано с изменением кри-
сталлической структуры фторидов (от кубиче-
ской к тетрагонально-искаженной).

ЗАКЛЮЧЕНИЕ
Таким образом, методом кристаллизации 

фторидов из раствора в расплаве нитрата натрия 
получены образцы, содержащие BaF2 и флюори-
топодобные фазы состава Ba1–xLnxF2+x с содер-
жанием LnF3 около 40  мол. %. Фторид бария в 
процессе промывки образцов водой растворя-
ется и удаляется из системы. Установлено, что 
для таких флюоритоподобных фаз, содержащих  
Ln  =  Gd–Lu,  наблюдается  искажение  куби-
ческой структуры, сопровождающееся расще-
плением основных линий на соответствующих 
дифрактограммах и появлением характерного 
набора сверхструктурных рефлексов.

Интерпретация полученных результатов мо-
жет быть выполнена с учетом правила ступеней 
Оствальда [52–54]. Согласно известным фазо-
вым диаграммам [48, 55], тригональные флюо-
ритоподобные фазы Ba4Ln3F17 устойчивы во 
всех исследованных системах при температуре 
синтеза (500°С). Однако формирование триго-
нальных флюоритоподобных фаз Ba4Ln3F17 со 
сверхструктурным упорядочением происходит 
при их синтезе в расплаве NaNO3 только для Ln 
с малыми ионными радиусами (Tm–Lu). Для 
промежуточных по размеру ионов РЗЭ (Gd–Ho) 
формируются флюоритоподобные фазы тетра-
гональной сингонии, демонстрирующие очень 
слабые сверхструктурные рефлексы на дифрак-
тограммах. Их можно рассматривать как первую 
стадию упорядочения кластеров Ln6F37 во флюо-
ритовой матрице. Для РЗЭ цериевой подгруппы в 
исследованных системах при синтезе в расплаве 
NaNO3 формирующиеся фазы схожего химиче-
ского состава не имеют признаков упорядочения.

Фазообразование в системах BaF2–LnF3 при 
кристаллизации из раствора в расплаве нитрата 
натрия может стать физико-химической основой 
создания новых функциональных материалов. 
Тетрагональная матрица Ba1–x–yGdxNayF2+x–y, ле-
гированная ионами Yb, Ho, Er, была использова-
на для создания люминесцентного оптического 
термометра [56]. 
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INVESTIGATION OF THE ORDERING OF Ba1–xLaxF2+x  
SOLID SOLUTIONS DURING PHASE FORMATION FROM A SOLUTION  

IN A SODIUM NITRATE MELT
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Matrices based on inorganic fluorides have garnered significant interest from researchers for the development of 
effective phosphors. In this study, fluorite-like phases of the composition Ba1–xLnxF2+x, with an LnF3 content of 
approximately 40 mol. % for Ln = La–Lu, were synthesized by crystallization of fluorides from a NaNO3 melt. 
It was observed that the by-product of the synthesis, BaF2, dissolves and is removed from the system during 
the washing of samples with water. A cubic solid solution with a fluorite structure was formed for rare earth 
elements within the cerium subgroup. Notably, sodium was incorporated into the samples with Ln = Gd–Lu. 
The formation of trigonal fluorite-like phases with the Ba4Ln3F17 structure occurred during synthesis only for 
lanthanoides with smaller ionic radii (Tm–Lu). For intermediate-sized rare earth ions (Gd–Ho), fluorite-
like tetragonal phases were formed, exhibiting very weak superstructural reflections on the X-ray diffraction 
patterns. The resulting matrices have potential applications in the development of up-conversion luminophores 
and optical thermometers.

Keywords: fluorides, luminophores, synthesis, sodium nitrate, barium fluoride, rare earth elements
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