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В статье предложен новый подход для повышения прочности льда, заключающийся в формировании 
ледяных нанокомпозитов простым замораживанием аэрогелей из нано/микрофибриллярной целлюло-
зы, предварительно наполненных водой. Предложенное решение позволяет устранить основной не-
достаток льда – хрупкость, ограничивающую его использование в качестве строительного материала, 
основы дорог и переправ в зимнее время в труднодоступных северных регионах с продолжительной 
зимой. В настоящее время укрепление достигается за счет введения различных добавок – опилок, по-
лимеров, бумаги, кремнезема, базальтовых волокон. Однако формирование таких ледяных композитов 
является трудоемким процессом, так как часто проводится последовательным намораживанием ряда 
слоев, в которых макродисперсии оседают, плохо смачиваются, что приводит к формированию меха-
нически менее прочных гетерогенных структур. Предложенный подход отличается простотой, так как 
заключается в одностадийном заполнении пор водой в легко смачиваемой гидрофильной аэрогельной 
матрице, образованной из однородной трехмерной сетки многочисленных нано/микрофибрилл. цел-
люлозы. Аэрогели характеризуются небольшим удельным весом (0.1–0.001 г см–3) и большим объе-
мом (до 99 об. %) взаимосвязанных пор. Установлено, что механические свойства нанокомпозитов на 
участке упругой деформации определяются льдом. Упрочнение льда аэрогелями обусловлено измене-
нием механизма разрушения от хрупкого к пластичному. В отличие от льда, раскалывание которого на 
части происходит через хрупкое растрескивание по сформировавшимся макротрещинам, в ледяных 
нанокомпозитах образуются микротрещины, развитию которых препятствует трехмерная сетчатая 
структура из нано/микрофибриллярной целлюлозы. Постепенно нарастающее их число приводит 
к локальным растрескиваниям, а после достижения критического уровня к разрушению материала. 
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ВВЕДЕНИЕ
Лед является доступным строительным мате-

риалом в районах с продолжительной зимой и 
экстремальными климатическими условиями. 
Его использование проживающими там людьми 
имеет давнюю историю [1, 2]. В настоящее вре-
мя лед применяется в основном для возведения 
сезонной дорожно-транспортной инфраструкту-
ры – дорог, ледовых переправ и мостов – в зим-
нее время года в труднодоступных районах ар-
ктической зоны России, Финляндии, Швеции, 
Канады, Гренландии и Аляски [3–6]. Здания 
продолжают возводить, но в основном в рамках 

экспериментальных проектов и специальных ме-
роприятий [7–11]. 

Использование льда в первую очередь обуслов-
лено его дешевизной и доступностью в северных 
регионах с продолжительной зимой, а также де-
фицитом традиционных строительных материа-
лов. Однако лед обладает тремя существенными 
недостатками, ограничивающими его широкое 
применение [12, 13]. Лед уступает строительным 
материалам – бетону, кирпичу и древесине – по 
механической прочности. Ограничения обуслов-
лены также его хрупкостью. Важным недостат-
ком является крип (ползучесть), т.е. медленное 
течение льда, находящегося под нагрузкой, на-
пример, собственным весом, как наблюдается в 
случае глетчеров [14–16]. 

Во время второй мировой войны при выпол-
нении проекта по строительству из льда плаваю-
щего аэродрома было обнаружено его упрочнение  
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при добавлении 14% древесной пульпы [17]. Из-
готовленный композитный материал получил 
название “пайкерит” (Pykrete) в честь разработ-
чика. Он не только характеризовался повышен-
ной механической прочностью, но ко всему про-
чему медленнее плавился и был более устойчив к 
резким температурным перепадам. Благодаря от-
меченным достоинствам пайкерит вызывает по-
стоянный повышенный интерес исследователей 
и в настоящее время, подтверждением чего явля-
ется его использование в качестве строительного 
материала в ряде проектов [9, 12, 13]. 

Систематические исследования по улучше-
нию свойств льда стали проводиться с 1962 г. 
после публикации Coble и Kingery [18], которые 
установили, что к его упрочнению приводят са-
мые разные добавки, включая стекловолокно, 
асбест, древесные волокна, газетную и офисную 
бумагу. Они показали, что пайкерит в ряду сфор-
мированных ледяных композитов не находится 
на первой позиции, уступая некоторым из них. 

В последовавших многочисленных иссле-
дованиях различных исследовательских групп 
добавлялись опилки, ветки [12, 19–21], кора де-
ревьев [12, 20, 22], пиломатериалы [3], трава [12] 
и сено [21, 23], беленая сульфатная целлюло-
за [20, 24], микрокристаллическая целлюлоза [25].  
В качестве неорганических наполнителей ис-
пользовались стекловолокно [2, 3, 26], кремне
зем [19, 27], кварц, глина [28], базальтовые 
волокна [29], стальные сетки, стержни и кон-
струкции [4, 12]. В ряде случаев для упрочнения 
применялись полимерные материалы в виде тка-
ней, сеток, геосеток и стеклопластика [4, 30–32]. 
В подавляющем большинстве работ добавлялись 
различные виды бумаги [7, 12, 13, 20, 26, 32–36]. 
Добавки вводились в количестве от 1 до 20 мас. %. 
Они заметно улучшали механические свойства 
льда. В частности, модуль Юнга в большинстве 
случаев увеличивался в 2–3 раза. 

При сравнении различных материалов боль-
шинство исследователей отдавало предпочтение 
фибриллярным материалам на основе целлюло-
зы. Во внимание принималось смачивание во-
дой, которое было плохим в случае гидрофобных 
полимеров и металлов. Поэтому адгезия льда 
к ним оказывалась недостаточно хорошей, что 
отражалось на механических свойствах. Кроме 
того, в местах контакта формировались микро-
пузырьки воздуха [4]. Это приводило к отслаи-
ванию, способствующему разрушению при не-
больших нагрузках [6]. Целлюлозные материалы 
благодаря гидрофильности хорошо вмерзали в 

лед, формируя прочный композит [13], что на-
шло применение в ряде проектов при возведении 
зданий [8, 9, 11, 36]. 

Проблематичным являлось формирование 
однородных композитов, в которых добавки 
были бы равномерно распределены по всему 
объему [13, 24, 26]. Отсутствие однородности обу-
словлено плохой дисперсной устойчивостью ми-
крочастиц, а тем более макрочастиц [37]. После 
добавления эти частицы оседали быстрее, чем за-
вершалось замораживание, что приводило к ге-
терогенности ледяного композита. С этим стол-
кнулись при изготовлении пайкерита [13, 24]. 
Обнаружились проблемы и при использовании 
бумаги, из которой при набухании в воде форми-
руется неоднородная масса, состоящая из сгуст-
ков [18]. Кроме того, бумага поглощает огра-
ниченное количество воды. При избытке воды 
происходит расслаивание, что в совокупности 
приводит к значительной гетерогенности. От-
слаивание, как показано [26], превышало 50%. 

В последнее время внимание обратили на на-
норазмерные фибриллы целлюлозы, которые 
являются структурным элементом целлюлозных 
волокон [38, 39]. Поскольку их поверхность по-
крыта многочисленными гидроксильными груп-
пами, они гидрофильны, хорошо смачиваются 
водой, образуя с ней многочисленные водород-
ные связи [40], что обеспечивает хорошую адге-
зию к ледяной матрице [41, 42]. При добавлении 
0.01–1 мас. % наноразмерной целлюлозы в со-
став льда наблюдалось значительное повышение 
его механической прочности [25, 43]. Достоин-
ствами целлюлозы являются биосовместимость, 
биоразлагаемость и экологичность [44, 45]. Она 
не оказывает негативного воздействия на окру-
жающую среду, что имеет особо важное значение 
для северных регионов. 

Сдерживающим фактором для широкого ис-
пользования наноцеллюлозы является ее доро-
говизна, обусловленная трудоемкостью получе-
ния [46, 47]. Упрощенный способ ее извлечения 
из целлюлозных волокон в виде смеси нанофи-
брилл и микрофибрилл был предложен нами ра-
нее [48]. Из них были изготовлены формоустойчи-
вые аэрогели, т.е. такие, которые не распадаются 
и сохраняют форму при смачивании, что позво-
ляет провести их модификацию различными хи-
мическими методами “мокрой” химии [49–51].  
Следует отметить, что из волокон целлюлозы не 
формируются аэрогели, сохраняющие форму в 
воде, что было установлено еще в 1931 г. [52], а из 
нанокристаллической целлюлозы, представляю-
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щей собой конечный вариант в извлечении нано-
целлюлозы, они распадаются в водных растворах 
[53, 54]. В настоящей работе впервые формо
устойчивые аэрогели из смеси нано- и микрофи-
брилл были применены для формирования ле-
дяных нанокомпозитов. Ранее опубликованных 
сообщений на эту тему не найдено.

К числу достоинств аэрогелей мы относим тот 
факт, что они состоят из нано/микрофибрилл, 
многочисленные переплетения и зацепления 
которых образуют трехмерную сетчатую струк-
туру, находящуюся в объеме ледяной матрицы 
и определяющую ее свойства. Несомненным 
достоинством является также их незначитель-
ный удельный вес, находящийся в диапазоне 
0.001–0.1 г см‑3 [55]. Для сравнения отметим, что 
удельный вес целлюлозы находится в диапазоне 
1.53–1.89 г см–3 [56], древесины – 0.5–1.0 г см–3 [57],  
бумаги – 0.5–1.5 г  см–3 [58]. Незначительный 
удельный вес означает, что аэрогели сопостави-
мых размеров весят, как минимум, раз в 10 мень-
ше указанных выше целлюлозных материалов, 
что, несомненно, имеет важное значение при их 
доставке в труднодоступные северные регионы 
для введения в состав ледяных композитов при 
возведении ледяных дорог, мостов и зданий. 

Целью работы являлось формирование новых 
композитов льда, для улучшения механических 
свойств которых впервые применены аэрогели 
из нано/микрофибриллярной целлюлозы, и ис-
следование их свойств. 

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
Материалы. Для получения нано/микрофи-

бриллярной целлюлозы (НМФЦ) использовали 
медицинскую вату, которая не подвергалась отбе-
ливанию и не содержала добавок, придающих бе-
лизну; лимонная кислота квалификации “о.с.ч.” 
(Реахим, Россия); для приготовления растворов 
на этапе изготовления аэрогелей использовалась 
деионизованная вода, подготовленная на уста-
новке Rios-Di Clinical (Milipore, Германия); лед 
получен замораживанием дистиллированной 
воды. 

Получение НМФЦ. Целлюлозные волокна, 
предварительно очищенные от возможных жи-
ровых загрязнений отмывкой в ацетоне, наре-
зались на кусочки длиной 5–8 мм, смачивались 
небольшим количеством воды и затем дробились 
с помощью высокоскоростной роторной мель-
ницы Laboratory High-Speed Rotor Mill/Grinder  
CIT-FW100 (Coll-Ibt Tech, США) как описано 

ранее в [48, 51]. Поскольку при дроблении про-
исходит быстрый разогрев, процедура ограни-
чивалась одной минутой. Дисперсия заливалась 
жидким азотом и после частичного оттаивания 
снова подвергалась дроблению. Заморажива-
ние–оттаивание способствовало извлечению 
нанофибрилл за счет образующихся между ними 
кристалликов льда. Такое чередование делалось 
минимум пять раз. Полученная НМФЦ дис-
пергировалась в воде, концентрация составляла 
1.2 мас. %. Диаметр нано/микрофибрилл варьи-
ровал от ~10 нм до ~10 мкм [59]. 

Изготовление аэрогелей. Подготовленная дис-
персия НМФЦ переливалась в силиконовые 
ванночки, в которых замораживалась при –10°С 
в морозильной камере. На следующий день ван-
ночки переносились в лиофильную сушилку 
ALPHA 1-2 LD (Martin Christ GmbH, Германия). 
Полное удаление воды обычно завершалось че-
рез 3 сут. 

Аэрогели с лимонной кислотой (3 мас. %), 
добавленной на стадии формирования диспер-
сии в водном растворе, подвергались прогреву 
при 80°С в течении 24 ч в соответствии с мето-
дом, предложенным ранее [60]. Это приводило 
к химической сшивке нано/микроразмерных 
фибрилл, т.е. лимонная кислота связывалась ко-
валентно с соседними фибриллами, выступая в 
качестве сшивающего мостика. Избыток лимон-
ной кислоты удаляли отмывкой в воде. Отмытые 
образцы замораживали и высушивали в лио-
фильной сушилке. 

Плотность образцов (d) определялась по ре-
зультатам взвешивания на аналитических весах 
и измерения объема (V) с помощью прибора En-
velope Density Analyzer GeoPyc 1360 (Micromerit-
ics, США) [50]. Расчет проводился по уравнению 
d = m/V, где m – масса образца. Объем пор (Р, %) 
рассчитывался по уравнению P = (1 − d/dm) × 100, 
где dm – плотность НМФЦ [61], которая прирав-
нивается к плотности пленки, изготовленной из 
НМФЦ. 

Формирование ледяных нанокомпозитов. Аэрогели 
соответствующих размеров помещались в тефло-
новые кюветы с размером ячейки 10 × 10 × 20 мм, 
заливались дистиллированной водой и затем пе-
реносились в морозильную камеру на массивную 
металлическую пластину. Образцы льда готови-
лись аналогичным образом, но аэрогели в кюветы 
не помещались. Замораживание осуществлялось 
при –15°C в течение 48 ч. Масса нанокомпози-
тов определялась водой, доля которой составляла 
99.4–99.6 мас. %.
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Механические измерения. Изучение механиче-
ских свойств аэрогелей проводилось на реоме-
тре Haake Mars III (Thermo Scientific, Германия). 
Ячейка реометра снабжена двумя параллельны-
ми пластинами диаметром 30 мм с рифленой 
поверхностью. Измерения осуществлялись при 
комнатной температуре в режиме одноосного 
сдавливания и снятия нагрузки с одинаковой 
скоростью в обоих случаях, равной 0.05 мм с–1. 

Механические характеристики льда и нано-
композитов в режиме одноосного сжатия с по-
стоянной скоростью 4 × 10–3 с–1 снимались на 
сервогидравлической испытательной машине 
MTS 870 Landmark (MTS, США), включающей 
климатическую камеру, при температуре –15°C. 
Все измерения проводились как мимнимум с пя-
тью образцами каждого типа. 

Сканирующая электронная микроскопия. Изо-
бражения получены на автоэмиссионном ми-
кроскопе Hitachi S-5500 (Япония). Образцы для 
съемки готовились как описано в [62]. Наблюде-
ния проводились при комнатной температуре. 

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
Морфология аэрогелей. Изображения аэрогеля, 

сделанные с помощью сканирующего электрон-
ного микроскопа, приведены на рис. 1. Они по-
лучены при разных увеличениях, что позволило 
изучить морфологию аэрогелей на разных струк-
турных уровнях, начиная от макроскопического 
и вплоть до наноразмерного. Характерной струк-
турной особенностью является трехмерная сетка 
из многочисленных переплетений и зацеплений 
НМФЦ, которая и стабилизирует структуру, де-
лая аэрогели формоустойчивыми при погруже-
нии в воду. При извлечении из воды образцы 

сохраняли форму и геометрические размеры, а 
после сушки на воздухе происходило лишь их не-
значительное сжатие [48, 49]. Сшивка нано/ми-
кроразмерных фибрилл посредством лимонной 
кислоты принципиальным образом не меняла 
морфологию, но оказывала дополнительный ста-
билизирующий и упрочняющий эффекты. 

Характерными особенностями аэрогелей яв-
ляются незначительный удельный вес и большой 
объем пор, достигающий 99%, [55, 63, 64]. В част-
ности, аэрогели, сформированные в настоящей 
работе, имеют удельный вес ~0.05 г см–3, а объем 
пор ~97%. Поры можно разделить на два основ-
ных типа. Одни из них образовались в ходе замо-
раживания водной дисперсии НМФЦ. Процесс 
начинается с появления зародышей микрокри-
сталликов льда, которые, постепенно разрастаясь, 
раздвигают прилегающие нано/микрофибриллы. 
При лиофилизации образцов на месте микрокри-
сталлов льда остаются пустоты (поры) [65]. Не-
которые из них обведены кружками и показаны 
стрелками на рис. 1а. Поры данного типа имеют 
размер ~100 мкм. Промежутки между ними за-
полнены НМФЦ. Второй тип пор представлен 
зазорами между соседними нано/микрофибрил-
лами. Они имеют существенно меньший размер 
и большой разброс по размерам, определяемый 
плотностью сетчатой структуры (рис. 1б,в). Все 
поры являются сквозными и взаимосвязаны друг 
с другом. Поэтому жидкости могут свободно про-
никать и быстро распределяться в объеме аэроге-
ля [48, 49]. Изготовление нанокомпозитов льда по 
этой причине оказывается простым и быстрым. 
Вода добавлялась в аэрогели до полного запол-
нения всего объема, а затем проводилось замора-
живание образцов. 

(a) (б) (в)

100 мкм 10 мкм 200 нм

Рис. 1. СЭМ-изображения аэрогеля из НМФЦ, полученные при разном увеличении. Кружками и стрелками показаны 
поры, образовавшиеся на месте микрокристалликов льда. 
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Механические свойства аэрогелей. Зависимость 
напряжения сжатия s от деформации e показана 
на рис. 2 для образца аэрогеля, изготовленного из 
НМФЦ без дополнительной химической сшив-
ки. Величина деформации рассчитывалась по 
уравнению: 
	 e = [(h0 – h)/h0] × 100%, 	 (1)

где h0 и h – толщина исходного и сжатого образ-
цов соответственно. На графике показаны три 
кривые, отвечающие первому сжатию (рис. 2, 
кривая 1), восстановлению в ходе постепенного 
снятия нагрузки (кривая 2) и второму сжатию 
(кривая 3). Последовательное деформирование 
проводилось с одинаковой скоростью 0.05 мм с–1. 
Снятие нагрузки осуществлялось с такой же ско-
ростью, но в обратном направлении. Останов-
ки при смене режима не делались. Как видно 
из графика, сжатие образца достигало 80%, но 
разрушение не наблюдалось. Восстановление до 
исходных геометрических размеров после снятия 
нагрузки не происходило и было частичным, со-
ставляющим ~70%. Это видно из результатов вто-
рого сжатия, которое начиналось с того же поло-
жения, что и первое, а контакт с поверхностью 
образца, отмеченный стрелкой 5, происходил 
позже. Из разницы можно установить степень 
восстановления.

Зависимость напряжения сжатия от деформа-
ции на рис. 2 характеризуется начальным линей-
ным участком, за которым происходит экспонен-
циальный рост σ. Такое поведение характерно 

для эластичных материалов при значительных 
механических деформациях [50]. 

Отсутствие хрупкости, растрескиваний и раз-
рушений, эластичное поведение при нагрузках и 
сохранение структурной целостности после экс-
тремально больших деформаций является одним 
из основных достоинств целлюлозных аэроге-
лей [50]. В то время как керамические и металли-
ческие аналоги разрушаются при деформации не 
более, чем в несколько процентов. У силикатных 
аэрогелей, которые находят наиболее широкое 
применение, порог не превышает 1% [66, 67]. 

Отмеченные особенности поведения при 
больших деформациях аэрогелей из НМФЦ 
(рис. 2) объясняются гибкостью нано/микро-
фибрилл, а также большим объемом пор (~97%), 
благодаря которым имеется много свободно-
го пространства. При сдавливании происходит 
эластичное уплотнение структуры, что объяс-
няет большие по величине деформации (до 80%, 
рис. 2), не сопровождающиеся растрескиванием 
и распадом материала. 

Характер зависимости напряжения s от де-
формации e для аэрогелей из сшитой НМФЦ, 
а также пропитанных водой, не изменился. Он 
имеет те же особенности, которые отмечены при 
рассмотрении графика на рис. 2. Для количе-
ственного сопоставления механических свойств 
материалов необходимо найти модуль Юнга Е. 
Он определяется из тангенса угла наклона на-
чального линейного участка кривых на графиках 
зависимости s от e (рис. 2). Рассчитанные значе-
ния Е сведены в табл. 1. 
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Рис. 2. Зависимость сжимающего напряжения от деформа-
ции аэрогеля. Показаны кривые первого сжатия (1), снятия 
нагрузки (2) и второго сжатия (3). 4 – касательная к началь-
ному участку кривой 1; 5 – стрелкой показано начало вто-
рого сжатия после контакта пластины с образцом.

Таблица 1. Механические свойства аэрогелей и нано-
композитов льда 

Материал sy
а, МПа E, МПа ep

б, %

Аэрогели 
Несшитая НМФЦ – 0.050 н. р.в

Влажный,  
несшитая НМФЦ – 0.006 н. р.

Сшитая НМФЦ – 0.075 н. р.
Влажный,  
сшитая НМФЦ – 0.007 н. р.

Нанокомпозиты, лед 
Лед 13.5 ± 3.5 2 600 ± 500 ~0.4 
Несшитая НМФЦ 17.3 ± 1.1 2 500 ± 100 14 ± 3 
Сшитая НМФЦ 10.7 ± 1.4 1 900 ± 300 24 ± 9 

а sy – предел текучести; б ep – пластичность; в н. р. – нет раз-
рушения.
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Сопоставление модулей Юнга показыва-
ет, что сшивка нано/микрофибрилл, которая 
была достаточно редкой, привела к некоторому 
упрочнению аэрогелей, но не очень значитель-
ному. Большой эффект оказывает смачивание 
водой. Модуль Юнга для обоих влажных образ-
цов, приведенных в табл. 1, уменьшился почти в 
10 раз, что согласуется с предыдущими результа-
тами [48–50].

Механические свойства нанокомпозитов льда. 
Зависимость напряжения сжатия s образца льда 
от деформации e показана на рис. 3а. Кривая 
имеет вид, типичный для хрупких материалов. 
График зависимости включает три основные об-
ласти. На начальном участке экспоненциально-
го роста напряжения устанавливается истинный 
контакт сжимающих пластин с поверхностью 
образца. Это область подгонки, на которую в 
рассматриваемом случае приходится ~0.4%. За 
ней следует линейный участок, обусловленный 
упругой деформацией. Из тангенса наклона ли-
нейного участка рассчитывается модуль Юнга 
(см. табл. 1). По достижении максимального сжа-
тия происходит резкий спад s, что вызвано раз-
рушением образца: лед раскалывается на кусоч-
ки. Протяженность второй области, как следует 
из рис. 3а, составляет порядка 0.4%, а величина 
сжимающего напряжения, при котором проис-
ходит разрушение образца, равна 13.4 МПа. Най-
денные параметры, включая модуль Юнга, по 
величине хорошо коррелируют с литературными 
данными (см., например, [12, 14, 16, 68]). 

Результаты исследования нанокомпозитов 
льда, модифицированных аэрогелями из несши-
тых и химически сшитых нано/микрофибрилл, 
приведены на рис. 3б,в соответственно. При со-
поставлении с графиком на рис. 3а видны прин-
ципиальные отличия в механическом поведении. 
Они заключаются в появлении дополнительной 
области – зоны пластичности. Она следует за дву-
мя начальными областями – подгонки и упругой 
деформации. После их прохождения нанокомпо-
зит не раскалывается в результате формирования 
и развития макротрещин, как происходит в слу-
чае льда, а разрушается постепенно, образуются 
микрорастрескивания. Процесс начинается по-
сле прохождения максимума на кривой, вызывая 
достаточно быстрый спад напряжения s, кото-
рый постепенно замедляется. На завершающей 
стадии кривая практически выходит на плато 
(рис. 3б). Такое поведение типично для матери-
алов с пластической деформацией [69]. Достига-
емое наибольшее значение s, предшествующее 
спаду, называется пределом текучести, которое 
обозначено как sy. Этот параметр является одной 
из важных характеристик механических свойств 
материалов, поскольку характеризует механиче-
скую прочность и переход к постепенному – пла-
стическому – разрушению. Значения sy для ис-
следуемых нанокомпозитов приведены в табл. 1. 

Другой важной характеристикой материалов 
является пластичность, поскольку она опреде-
ляет степень деформирования до достижения 
их полного разрушения. Чем она выше, тем ме-
нее подвержен пластичный материал разруше-
нию после достижения максимального сжатия 
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Рис. 3. Зависимость сжимающего напряжения от деформации: лед (а); ледяные нанокомпозиты, усиленные аэрогелем, из 
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проводились как минимум с пятью образцами каждого типа.



47УПРОЧНЕНИЕ ЛЬДА АЭРОГЕЛЯМИ ИЗ НАНО/МИКРОФИБРИЛЛЯРНОЙ ЦЕЛЛЮЛОЗЫ

ДОКЛАДЫ РОССИЙСКОЙ АКАДЕМИИ НАУК. ХИМИЯ, НАУКИ О МАТЕРИАЛАХ  том 520  2025

(sy) [69]. Пластичность характеризуется величи-
ной ep. Она рассчитывается по уравнению (1), в 
котором толщина сжатого образца (h) определе-
на при разрушении. Полученные значения ep для 
исследованных ледяных нанокомпозитов, уси-
ленных аэрогелями из НМФЦ, сведены в табл. 1. 

Поведение нанокомпозитов льда, модифици-
рованных аэрогелями из несшитых (рис. 3б) и 
сшитых (рис. 3в) нано/микрофибрилл, при меха-
ническом сжатии принципиальным образом не 
отличается за исключением некоторых важных 
деталей. В обоих случаях имеется максимум на 
кривых, но в случае сшитой нано/микрофибрил-
лярной матрицы предел текучести получился не-
сколько меньше максимального значения сжатия 
для льда, а для несшитых аэрогелей sy – больше 
(табл. 1). Модули Юнга также не различаются 
значительным образом (табл. 1). Различия в вели-
чинах в обоих случаях составляют порядка 30%. 
Они не столь существенны, что позволяет сде-
лать вывод об отсутствии значительного воздей-
ствия аэрогелей на упругую деформацию льда. 
Полученный результат вполне объясним, если 
сопоставить механические свойства ледяной и 
аэрогельной матриц (табл. 1). Первая превосхо-
дит вторую по модулю Юнга минимум в 104 раз. 
Поэтому механические свойства нанокомпози-
тов на участке упругой деформации определяют-
ся в первую очередь льдом, а не аэрогелем. 

Усиление механической прочности льда аэро
гелями из НМФЦ выражается через пластич-
ность. Если образец льда после достижения 
критической величины сжатия раскалывается 
(рис. 3а), то с нанокомпозитом этого не проис-
ходит (рис. 3б,в). Для его разрушения необходи-
мо дополнительное, весьма значительное сжа-
тие. Чем больше пластичность, тем механически 
прочнее оказывается материал [69]. Как следует 
из рис. 3в, нанокомпозиты льда могут быть раз-
рушены при значении деформации (ep), прибли-
жающимся к 30%. 

В области пластичности выявилось также от-
личие между нанокомпозитами льда, исследо-
ванными в работе. Она получилась заметно шире 
в случае льда, усиленного сшитым аэрогелем 
(рис. 3в), чем несшитым (рис. 3б). Различие до-
стигает 50%. Кроме того, в половине измерений 
за постепенным спадом кривых (рис. 3в, кри-
вая 1) следует не плато, а вначале наблюдается 
некоторый рост, переходящий в плато (рис. 3в, 
кривая 2). Это указывает на повышенную устой-
чивость нанокомпозитов, включающих аэрогели 

из сшитых нано/микрофибрилл. По всей види-
мости, их более значительное усиливающее воз-
действие отражает факт большей механической 
прочности в сравнении с аэрогельной матрицей 
из несшитых нано/микрофибрилл (табл. 1). 

Разрушение пластичных материалов, в от-
личие от хрупких, происходит не в результате 
формирования и развития макротрещин, как 
в случае льда, а через серию ограниченных ло-
кальных микроразрушений. О протекании тако-
го процесса свидетельствует наличие на кривых 
небольших по амплитуде осцилляций, отмечен-
ных стрелками на рис. 3б. По всей видимости, 
переход от макроскопического к микроскопи-
ческому растрескиванию льда, возникающего в 
различных, не связанных друг с другом местах, 
обусловлен разветвленной сетчатой структурой 
из нано/микрофибрилл (рис. 1). Они ограничи-
вают распространение микротрещин в пределах 
микропор, в которых наблюдается их возникно-
вение. Распад происходит только после накопле-
ния критического числа микрорастрескиваний в 
какой-то критической части объема. 

Сопоставление с литературными данными 
выявляет ряд существенных отличий наноком-
позитов льда, усиленных аэрогелями из НМФЦ, 
с другими видами нанокомпозитных материалов. 
Разнообразные модифицирующие добавки при-
водили в большинстве случаев к 2–3-кратному 
усилению ледяной матрицы, как следует из сопо-
ставления величин максимального сжатия и мо-
дулей Юнга. Это было установлено в первых ис-
следованиях пайкерита [17] и подтверждено затем 
многими исследователями [9, 12, 13]. Введение 
иных модифицирующих добавок давало близкий 
результат (см., например, [3, 12, 18, 20–24]). Их 
усиливающее воздействие объясняется высокой 
механической прочностью. В частности, Е для 
древесной пульпы и стекловолокна находятся 
в пределах 3–10 и 70–100 ГПа соответственно 
[30]. В последнем случае величина модуля Юнга 
практически на порядок превосходит его значе-
ние для льда. Поэтому неудивительно, что введе-
ние указанных материалов в состав льда привело 
к его заметному усилению. Аэрогели из НМФЦ 
(рис. 2, табл. 1) не отличаются высокими значе-
ниями модуля Юнга: значение Е для них как ми-
нимум в 104 раз меньше, чем для льда. Как след-
ствие, их включение не отразилось аналогичным 
образом на механических свойствах льда. 

Интересно, что при добавлении дисперсии 
наноцеллюлозы в состав льда наблюдалось поч-
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ти 7-кратное увеличение предела текучести [25]. 
Отмечено, что зона пластичности получилась уз-
кой – менее 0.5%. Это означает, что ледяной нано-
композит практически сразу разрушался при его 
дальнейшем, очень небольшом сжатии. В случае 
аэрогелей, изученных в настоящей работе, про-
тяженность зоны пластичности в 6–7 раз больше. 
Значение ep приближается к 30% (рис. 3в, табл. 1). 
Столь значительное расширение зоны пластич-
ности является свидетельством существенного 
роста механической прочности [69]. Разрушение 
нанокомпозита льда после достижения макси-
мального сжатия (sy) требует значительного де-
формирования. Такой материал оказывается бо-
лее устойчив к механическому воздействию, чем 
материал с меньшим значением sy. 

Проведенные эксперименты показали, что 
аэрогели из НМФЦ являются перспективными 
модифицирующими добавками для льда, замет-
ным образом улучшающими его механические 
свойства. К числу их несомненных достоинств 
можно отнести небольшой удельный вес, что 
представляется важным при доставке в трудно-
доступные северные регионы. Они гидрофиль-
ны, хорошо смачиваются водой, которая легко 
проникает внутрь матрицы благодаря большому 
объему взаимосвязанных мезо/макропор. Поэ-
тому формирование нанокомпозита, как пока-
зано в настоящей работе, осуществляется в одну 
стадию – простым добавлением воды до полного 
заполнения всего объема аэрогеля. Последующее 
замораживание приводит к образованию льда, 
внутри которого однородно распределены цел-
люлозные нано/микрофибриллы, образующие 
сетчатую структуру. Ее плотность легко изменя-
ется на стадии изготовления аэрогелей варьиро-
ванием концентрации дисперсии в воде [70, 71], 
что позволяет регулировать структуру и свойства 
нанокомпозита. НМФЦ можно модифицировать 
хорошо разработанными методами химии угле-
водов. Они дают возможность ввести различные 
функциональные группы [72–74], присоединить 
полимеры и биополимеры [50, 72, 73, 75–77]. 
Кроме того, широкое распространение получила 
минерализация аэрогелей, т.е. введение или на-
несение покрытий из металлов и оксидов метал-
лов [51, 64, 78, 79]. Вся совокупность указанных 
подходов позволяет существенным образом из-
менить свойства аэрогельной матрицы, включая 
механические, что открывает широкие возмож-
ности для создания новых ледяных нанокомпо-

зитов с улучшенными прочностными характери-
стиками. 

В заключение следует добавить, что целлюло-
за является возобновляемым сырьевым источ-
ником, находящимся на первом месте среди 
биополимеров [38, 80]. Она синтезируется из 
углекислого газа и воды в растениях в ходе фо-
тосинтеза [81]. Целлюлозные материалы биосо-
вместимы и биоразлагаемы. Их использование 
не наносит экологического вреда окружающей 
природе, что представляется особенно важным 
для северных регионов, в которых предполагает-
ся использование нанокомпозитов льда. 

ВЫВОДЫ
В статье описаны новые нанокомпозиты льда, 

для усиления которых впервые были использова-
ны аэрогели из нано/микрофибриллярной цел-
люлозы. Метод их изготовления отличается про-
стотой, поскольку заключается в одноразовом 
заполнении аэрогельной матрицы водой, которая 
быстро поглощается благодаря гидрофильности 
сетчатой структуры из целлюлозных нано/ми-
крофибрилл и большому объему мезо/макропор, 
достигающему 97 об. %. Установлено, что макси-
мальное напряжение разрушения и модуль Юнга 
нанокомпозитов и льда различаются в неболь-
шой степени. Это указывает на то, что данные 
механические характеристики в первую очередь 
определяются свойствами льда. Возможное объ-
яснение заключается в невысокой механической 
прочности сетчатой структуры из целлюлозных  
нано/микрофибрилл. Модуль Юнга аэрогелей, 
как минимум, в 104 раз меньше, чем у льда. 

 Существенное воздействие аэрогелей на меха-
нические свойства проявилось в изменении ме-
ханизма разрушения. Он сменился с хрупкого на 
пластичное, что обусловлено переходом от рас-
пада через макротрещины к разрушению через 
микрорастрескивания. Изменение механизма 
обусловлено ограничениями для распростране-
ния формирующихся микротрещин, накладыва-
емыми сеткой из НМФЦ, которая стабилизирует 
и упрочняет структуру льда. В результате такого 
упрочения ледяные нанокомпозиты не разруша-
лись при деформации в 30% благодаря широкой 
зоне пластичности. 

Следует отметить, что статья является пер-
вой публикацией, в которой аэрогели из НМФЦ 
применили для укрепления льда. Первые экс-
перименты были модельными. В частности, для 
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формирования льда использовали дистиллиро-
ванную воду. В реальных условиях природная 
вода содержит неорганические соли, которые 
оказывают большое воздействие на структуру и 
свойства льда. Поэтому предполагается рассмо-
треть их влияние на ледяные нанокомпозиты в 
последующих публикациях. 
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ICE REINFORCED WITH AEROGELS FROM  
NANO/MICROFIBRILLATED CELLULOSE
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The fragility of ice limits its use as construction material, the road and crossings base in winter period in hard-to-
reach northern regions. To strengthen it, various dispersed additives are introduced. However, the approaches 
proposed to date are labor-intensive, dispersions settle and can be poorly wetted. Here we suggest to strength 
ice using nano/microfibrillar cellulose aerogels. Their advantages over currently used materials include low 
specific gravity (0.1–0.001 g  cm–3), large volume (up to 99 vol. %) of interconnected pores, hydrophilicity 
and biodegradability. The ice nanocomposites were formed in one step by simple impregnation of aerogels 
with water and subsequent freezing. The volume of the ice matrix included a homogeneous three-dimensional 
network of intertwined nano/microfibrils. The enhancement of the mechanical strength of ice by aerogels was 
due to a change in the mechanism of failure from brittle to plastic. Unlike ice, the composites did not undergo 
a breakdown into pieces after reaching yield stress. The three-dimensional network of nano/microfibrils of 
cellulose prevented the formation and development of macrocracks, which are associated with the rapid 
breaking of ice. Destruction occurred through a gradually increasing number of microcracks. 

Keywords: nanocellulose, aerogel, ice, nanocomposite 
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