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Впервые установлен максимальный синергетический эффект снижения горючести эпоксидной смо-
лы по кислородному индексу с использованием нестехиометрической смеси меламина и гидрофосфа-
та аммония. Синергетика смеси обусловлена образованием термостойких керамоподобных структур 
в результате термодеструкции компонентов. В настоящей работе впервые установлен эффект увели-
чения стойкости до (80 ± 10)% к импульсным нагрузкам с последующим быстрым разрушением (рео-
логический взрыв) для полимерного композита на основе отвержденной эпоксидной смолы с 20%‑м 
содержанием фосфор-азотсодержащих антипиренов (P,N-антипиренов) за счет введения 0.5–1.5% 
наночастиц органобентонита. Впервые зафиксировано, что импульсы электрического тока, возни-
кающие при сверхбыстром разрушении композита без наночастиц органобентонита, отличаются 
по частотным характеристикам от композита с введенными наночастицами органобентонита. Для 
композита без наночастиц органобентонита фиксируется одна полоса радиочастотного излучения с 
максимумом при 2.4 МГц, а для композита с введенными наночастицами органобентонита – полосы 
радиочастотного излучения с максимумами при 2.4, 20.9 и 25.3 МГц. Предложен вероятный механизм 
наблюдаемого эффекта.
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Снижение горючести эпоксидных смол – 
одно из важнейших направлений исследований 
в области трудногорючих полимерных компо-
зиционных материалов [1–3]. Для этой цели 
используются антипирены различной природы, 
в том числе в составе отвердителей эпоксидных 
смол, а также различные наполнители [4, 5]. Но 
использование реакционноспособных анти-
пиренов, как правило, приводит к ухудшению 
физико-механических и электрофизических 
свойств композитов. Поэтому преимуществен-
но используют дисперсии нереакционноспособ-
ных антипиренов в эпоксидной смоле. Особое 
внимание исследователей привлекают нере-
акционноспособные фосфор-азотсодержащие 
антипирены (P,N-антипирены), которые могут 
проявлять синергетический эффект снижения 
горючести соответствующих композиционных 
материалов [6, 7].

Нами получены и изучены нестехиометриче-
ские P,N-антипирены на основе механических 
смесей меламина (МЕЛ) и диаммоний гидрофос-
фата (ДАГФ). В качестве критерия синергетиче-
ского эффекта использовано определение кис-
лородного индекса (КИ) эпоксидно-диановой 
смолы (176–188 г/экв.), содержащей 20  мас.  % 
антипирена с различным соотношением МЕЛ 
и ДАГФ, в качестве отвердителя использовали 
триэтилентетрамин (рис. 1). Композиции отвер-
ждали при температуре окружающей среды при 
содержании 10 мас. % триэтилентетрамина по от-
ношению к эпоксидной смоле и кондициониро-
вали в течение 72 ч.

Оптимальное массовое соотношение ком-
понентов антипирена МЕЛ  :  ДАГФ  =  2  :  3 дает 
максимальный синергетический эффект соот-
ветствующего композита по КИ. Категория стой-
кости к горению ПВ-0 (ГОСТ 28779) достигается 
при содержании антипирена 15–18 мас. %.

Однако использование реакционноспособ-
ных антипиренов в той или иной степени также 
приводит к ухудшению физико-механических 
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свойств композитов, по сравнению с ненапол-
ненными системами [8, 9]. Особенно это прояв-
ляется в композициях “холодного” отверждения, 
когда дополнительная термостабилизация невоз-
можна.

Известно, что введение наночастиц, в частно-
сти органобентонита, в ряде случаев позволяет 
существенно повысить физико-механические 
свойства полимерных композиционных матери-
алов [3].

Целью настоящей работы является исследо-
вание изменения стойкости отвержденных эпок-
сидных смол с содержанием P,N-антипирена 
20  мас.  %  (соотношение  P,N-прекурсоров 
МЕЛ  :  ДАГФ  =  2  :  3) и 0.5–1.5% наночастиц  
органобентонита (BYK Cloisite® 20A Nanoclay) к 
импульсным нагрузкам.

Для оценки устойчивости трудногорючих ком-
позиционных материалов на основе эпоксидной 
смолы к динамическим нагрузкам использован 
метод реологического взрыва. Для исследова-
ния использовали специальную ячейку высокого 
давления, которая помещалась в машину сжатия 
ИС–500. Установка представляет собой ячейку, 
изолированную от прессового оборудования и 
состоящую из наковален Бриджмена; стальной 
обоймы и пуансонов, изолированных от обой-
мы, между которыми находится исследуемый 
образец, и изоляции, в которую вмонтирован 
планарный пьезодатчик для измерения давле-
ния на образец. Пуансоны через сопротивление 
нагрузки R = 50 Ом соединены с двухканальным 
цифровым осциллографом Tektronix MSO 200, 

также к осциллографу подключен пьезодатчик. 
Ячейка позволяет регистрировать импульс тока 
J(t) = RU(t), генерируемый электрической со-
ставляющей Е(t) электромагнитного излучения, 
возникающего в образце. Соответственно, на 
осциллографе регистрируются импульсы напря-
жения U(t). 

Суть эксперимента заключается в действии на 
образец одноосной нагрузки (скорость сдавли-
вания 1.0 ГПа с–1), которая приводит к реологи-
ческому взрыву (сверхбыстрому разрушению) 
при давлении PRV [10, 11]. Анализ зависимости 
значения PRV от количества введенной добавки 
нанокомпозита – наночастиц органобентони-
та – (НОБ) показал, что введение до 1.5 мас. % 
НОБ приводит к увеличению PRV на (80 ± 10)%, 
по сравнению с исходным композитом без до-
бавки НОБ (рис. 2). Установка также позволяет 
регистрировать изменение напряжения U(t), ге-
нерируемое протекающим по образцу током J(t), 
в зависимости от физико-химических превраще-
ний, возникающих в образце при реологическом 
взрыве. Соответственно, на осциллографе фик-
сируется напряжение U(t) = RJ(t) (сопротивление 
R = 50 Ом).

Характерные сигналы U(t) в результате воздей-
ствия одноосной нагрузки от исходного компо-
зита и композита, содержащего 1.5 мас. % НОБ, 
регистрировали с помощью цифрового осцил-
лографа. Для этих сигналов проведено преобра-
зование Фурье, и получены частотные спектры, 
представляющие собой отдельные огибающие 
полосы (рис. 3). Видно, что сигнал от реологиче-
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Рис. 1. Зависимость кислородного индекса композитов от 
содержания ДАГФ в антипирене (разброс данных не пре-
вышает 5%). 
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Рис. 2. Зависимость давления реологического взрыва PRV от 
количества введенного органобентонита (каждой точке со-
ответствует пять идентичных экспериментов, разброс дан-
ных не превышает 10%).
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ского взрыва исходного композита отличается по 
структуре от импульса для композита с 1.5 мас. % 
НОБ. Фурье-анализ полученных электрических 
сигналов показал, что для композита без НОБ 
фиксируется только низкочастотная полоса от 
радиочастотного излучения при 2.4 MГц, а в 
образцах, содержащих НОБ, фиксируется до-
полнительный сигнал, состоящий из двух вы-
сокочастотных полос с максимумами при 20.9 и 
25.3 MГц (указаны стрелками на рис. 3). 

Данная схема измерений аналогична методу 
диэлектрической спектроскопии в режиме time 
domain [12], когда на образец подается ступенча-
тое напряжение, а далее сигнал подвергается пре-
образованию Фурье и результирующая частотная 
зависимость представляет собой спектр диэлек-
трических потерь eʹʹ (ω). В данном случае в роли 
ступенчатого напряжения (внешнее возмуще-
ние) выступает внешний механический импульс 
от реологического взрыва. Полагая, что частот-
ные спектры (рис. 3) пропорциональны eʹ(ω), их 
можно анализировать, используя обобщенную 
диэлектрическую функцию Гаврилиака–Негами 
[13]. Поскольку формализм описания спектров в 
рамках метода Гаврилиака–Негами по формуле 
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справедлив для одиночной линии спектра неза-
висимо от того, принадлежит эта линия процессу 
излучения или поглощения, то отдельные полосы 
радиочастотного излучения были аппроксими-
рованы по формуле (1). Результаты аппроксима-
ции также приведены на рис. 3 в виде отдельных 
линий (даны пунктиром). Полученные при этом 
коэффициенты lg  f0, De, a, b для полос соответ-
ствующих частот приведены в табл. 1 ( f0 – частота 
в максимуме полосы излучения, De = es – e∞, где es 
и e∞ – статическая и оптическая диэлектрическая 
проницаемость соответственно, a и b – параме-
тры симметричного и асимметричного уширения 
формы спектра). Также определены характерные 
значения времен релаксации максимумов полос 
излучения τ0 =1/(2π f0).

Значения коэффициентов lg  f0, Δe, a, b для 
функции Гаврилиака–Негами позволяют по-
строить кривые функций распределения времен 
диэлектрической релаксации g(τ) для соответ-
ствующих полос по формуле
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частоты которых даны в табл. 1 и соответствуют 
полосам на рис. 4 (характерные значения време-
ни релаксации в максимумах полос излучения 
τ0 = 1/(2πf0)). 

Установлено, что с введением НОБ положе-
ние максимума функции распределения низко-
частотной полосы практически не изменяется, а 
каждая из высокочастотных полос спектра сме-
щается более чем на порядок (рис. 4), что указы-
вает на стабилизирующий эффект наночастиц.
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Рис. 3. Фурье-образы импульсов тока (огибающие кривые) 
и их спектральный состав, полученный на основе формулы 
Гаврилиака–Негами для полимерного композита (2.4 MГц) 
и для композита НОБ (2.4, 20.9, 25.3 MГц). Зеленая и крас-
ная штриховые линии – аппроксимация по формуле Гав-
рилиака–Негами.

Таблица 1. Данные соответствующих полос с макси-
мумами при 2.4, 20.9 и 25.3 MГц 

Частота  
излучения, МГц lg f0 Δe a b τ, нс

Исходный композит
 2.4 6.34 195.35 1.76 1.11 72.7

Композит + 1.5 мас. % НОБ
 2.4 6.34 195.36 1.76 1.11 72.7
20.9 7.29  49.42 1.88 0.57  8.16
25.3 7.39  62.53 1.96 0.55  6.48
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Таким образом, на основании проведенных 
исследований можно сделать заключение о том, 
что повышение стойкости композита к импуль-
сным нагрузкам при введении НОБ связано с 
возникновением высокочастотных релаксаци-
онных процессов. Вероятно, до определенного 
предела нагрузки (до PRV) введение НОБ реали-
зует процессы, останавливающие рост трещин, а 
при достижении этого предела рост трещин рас-
тормаживается и трещины с НОБ в вершине ре-
ализуют сброс энергии в виде дополнительного 
высокочастотного радиоизлучения. Это предпо-
ложение хорошо согласуется с работами [14, 15], 
в которых показано, что электромагнитные излу-
чения от разрушаемых полимерных материалов 
обусловлены распространением микротрещин, 
возникающих из-за увеличения пластической 
деформации, и микротрещины создают заряды 
на стенках трещин, которые образуют диполи и 
их колебания, и перемещения испускают элек-
тромагнитное излучение. 
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IMPACT RESISTANCE OF EPOXY COMPOSITES OF REDUCED 
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For the first time, the maximum synergistic effect of reducing the flammability of epoxy resin according to the 
oxygen index was established using a non-stoichiometric mixture of melamine and ammonium hydrophosphate. 
The synergetics of the mixture is due to the formation of heat-resistant ceramic-like structures as a result 
of thermal degradation of the components. In the present work, the effect of increasing the resistance up to 
(80 ± 10)% to impulse loads followed by rapid failure (mechanical or rheological explosion) was established 
for the first time for a polymer composite based on cured epoxy resin with 20% content of phosphorus-
nitrogen-containing flame retardants (P,N-antipyrenes) due to the introduction of 0.5–1.5% organobentonite 
nanoparticles. It is also recorded that the electric current pulses arising from the ultrafast destruction of the 
“matrix” composite differ in frequency characteristics from the composite with the introduced nanoparticles 
of organobentonite. For a polymeric composite, one band of radio frequency radiation with a maximum at 
2.4 MHz is fixed, and for a composite with introduced organobentonite nanoparticles, bands of radio frequency 
radiation with maxima at 2.4, 20.9 and 25.3 MHz. A probable mechanism of the observed effect is proposed. 
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