RAS PresidiumДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

Preparation and study of titanium alloy Ti–38Zr–9Nb (at. %) for medical purposes

PII
S3034511125010048-1
DOI
10.7868/S3034511125010048
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 520 / Issue number 1
Pages
33-40
Abstract
Titanium and its alloys have a number of unique properties, such as high specific strength, corrosion resistance, non-toxicity and biocompatibility with human tissues. Due to these properties, they are widely used to create prosthetic joints for the human body. However, the material used for implants, VT6 (Ti–6Al–4V), can cause a stress shielding effect due to a higher elastic modulus (110 GPa) compared to human bone (
Keywords
титановые сплавы циркониевые сплавы биосовместимые материалы слитки пластины механические свойства модуль упругости микроструктура
Date of publication
18.09.2025
Year of publication
2025
Number of purchasers
0
Views
8

References

  1. 1. Kim H.Y., Ikehara Y., Kim J.I., Hosoda H., Miyazaki S. // Acta mater. 2006. Т. 54. № 9. P. 2419–2429. https://doi.org/10.1016/j.actamat.2006.01.019
  2. 2. Zhang J., Li Y., Li W. // J. Mater. Sci. 2021. Т. 56. P. 11456–11468. https://doi.org/10.1007/s10853-021-05814-4
  3. 3. Patel N., Gohil P. // Int. J. Emerg. Technol. Adv. Eng. 2012. T. 2. № 4. P. 91–101.
  4. 4. Bai L., Gong C., Chen X., Sun Y., Zhang J., Cai L., Zhu S., Xie S.Q. // Metals. 2019. T. 9. № 9. P. 1004. https://doi.org/10.3390/met9091004
  5. 5. Chao Q., Hodgson P.D., Beladi H. // Metall. Mater. Trans. A. 2014. V. 45. P. 2659–2671. https://doi.org/10.1007/s11661-014-2205-5
  6. 6. Park Y.J., Song Y.H., An J.H., Song H.J., Anusavice K.J. // J. Dent. 2013. V. 41. № 12. P. 1251–1258. https://doi.org/10.1016/j.jdent.2013.09.003
  7. 7. Li Y., Wong C., Xiong J., Hodgson P., Wen C. // J. Dent. Res. 2010. V. 89. № 5. P. 493–497. https://doi.org/10.1177/0022034510363675
  8. 8. Schneider S.G., Nunes C.A., Rogero S.O., Higa O.Z., Bressiani J.C. // Biomecánica. 2000. V. 8. № 1. P. 84–87. https://doi.org/10.5821/sibb.v8i1.1653
  9. 9. Mishra A.K., Davidson J.A., Poggie R.A., Kovacs P., Ted J. Mechanical and tribological properties and biocompatibility of diffusion hardened Ti-13Nb-13Zr – A new titanium alloy for surgical implants. In: Medical applications of titanium and its alloys. Brown S.A., Lemons J.E. (eds). ASTM STP 1272, ASTM International, West Conshohocken, PA, 1996. pp. 96–116.
  10. 10. Black J. Biological performance of materials. Fundamentals of biocompability. 4th ed. Taylor & Francis Group, LCC: Abingdon, UK, 2005. 520 p. https://doi.org/10.1201/9781420057843
  11. 11. Конушкин С.В., Кирсанкин А.А., Михайлова А.В., Румянцев Б.А., Лукьянов А.С., Каплан М.А., Горбенко А.Д., Сергиенко К.В., Насакина Е.О., Колмаков А.Г., Севостьянов М.А. // Электрометаллургия. 2023. № 10. C. 2–8. https://doi.org/10.31044/1684-5781-2023-0-10-2-8
  12. 12. Насакина Е.О., Сударчикова М.А., Баикин А.С., Мельникова А.А., Демин К.Ю., Дормидонтов Н.А., Прокофьев П.А., Конушкин С.В., Сергиенко К.В., Каплан М.А., Севостьянов М.А., Колмаков А.Г. // Деформация и разрушение материалов. 2023. № 12. С. 25–29. https://doi.org/10.31044/1814-4632-2023-12-25-29
  13. 13. Сергиенко К.В., Михайлова А.В., Конушкин С.В., Каплан М.А., Насакина Е.О., Севостьянов М.А., Баикин А.С., Колмаков А.Г. // Металлы. 2022. № 4. C. 33–39. https://doi.org/10.30791/1028-978X-2023-12-32-42
  14. 14. Mohammed M.T., Khan Z.A., Siddiquee A.N. // Int. J. Chem. Nucl. Metall. Mater. Eng. 2014. V. 8. № 8. P. 822–827. https://doi.org/10.5281/zenodo.1094481
  15. 15. Chen Q., Thouas G.A. // Mater. Sci. Eng. R Rep. 2015. V. 87. P. 1–57. https://doi.org/10.1016/j.mser.2014.10.001
  16. 16. Liu Q., Meng Q., Guo S., Zhao X. // Prog. Nat. Sci. Mater. Int. 2013. V. 23. № 6. P. 562–565. https://doi.org/10.1016/j.pnsc.2013.11.005
  17. 17. Raffa M.L., Nguyen V.-H., Hernigou P., Flouzat-Lachaniette C.H., Haiat G. // J. Orthop. Res. 2021. V. 39. № 6. 1174–1183. https://doi.org/10.1002/jor.24840
  18. 18. Shahzamanian M.M., Banerjee R., Dahotre N.B., Srinivasa A.R., Reddy J.N. // Compos. Struct. 2023. V. 39. 117262. https://doi.org/10.1016/j.compstruct.2023.117262
  19. 19. Konushkin S.V., Kaplan M.A., Sergienko K.V., Gorbenko A.D., Morozova Y.A., Ivannikov A.Yu., Sudarchikova M.A., Sevostyanova T.M., Nasakina E.O., Mikhlik S.A., Kolmakov A.G., Sevostyanov M.A. // Inorg. Mater. Appl. Res. 2024. V. 15. № 2. P. 395–401. https://doi.org/10.1134/S2075113324020266
  20. 20. Hanawa T. // Sci. Technol. Adv. Mater. 2022. V. 23. № 1. P. 457–472. https://doi.org/10.1080/14686996.2022.2106156
  21. 21. Popescu S.M., Manolea H., Diaconu O.A., Mercuţ V., Scrieciu M., Dascǎlu I.T., Ţuculina M.J., Obadan F., Popescu F.D. // Defect and Diffusion Forum, 2017. V. 376. P. 12–28. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/DDF.376.12
  22. 22. O’Brien B. Niobium biomaterials. In: Advances in metallic biomaterials. Niinomi M., Narushima T., Nakai M. (eds). Springer Series in Biomaterials Science and Engineering, vol. 3. Springer, Berlin, Heidelberg, 2015. 245–272. https://doi.org/10.1007/978-3-662-46836-4_11
  23. 23. Sergienko K.V., Konushkin S.V., Kaplan M.A., Gorbenko A.D., Guo Y., Nasakina E.O., Sudarchikova M.A., Sevostyanova T.M., Morozova Ya.A., Shatova L.A., Mikhlik S.A., Sevostyanov M.A., Kolmakov A.G. // Metals. 2024. V. 14. №11. 1311. https://doi.org/10.3390/met14111311
  24. 24. Wang B.L., Li L., Zheng Y.F. // Biomed. Mater. 2010. V. 5. № 4. 044102. https://doi.org/10.1088/1748-6041/5/4/044102
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library