Президиум РАНДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

Формирование упорядоченных твердых растворов Ba1–хLnхF2+х при низкотемпературном синтезе из растворов в расплаве нитрата натрия

Код статьи
S3034511125010067-1
DOI
10.7868/S3034511125010067
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 520 / Номер выпуска 1
Страницы
53-59
Аннотация
Матрицы на основе неорганических фторидов привлекают внимание исследователей для создания эффективных люминофоров. В настоящей работе впервые методом кристаллизации фторидов из раствора в расплаве NaNO3 получены флюоритоподобные фазы состава Ba1–xLnxF2+x с содержанием LnF3 около 40 мол. % (Ln = La–Lu). Показано, что побочным продуктом синтеза является BaF2, который в процессе промывки образцов водой растворяется и удаляется из системы. Установлено, что для РЗЭ цериевой подгруппы в условиях синтеза образуется твердый раствор с кубической структурой типа флюорита. Отмечено вхождение натрия в состав образцов для Ln = Gd–Lu. Установлено, что формирование тригональных флюоритоподобных фаз со структурой Ba4Ln3F17 происходит при синтезе только для Ln с малыми ионными радиусами (Tm–Lu). Для промежуточных по размеру ионов РЗЭ (Gd–Ho) формируются флюоритоподобные тетрагональные фазы, демонстрирующие на дифрактограммах слабые сверхструктурные рефлексы. Полученные матрицы можно рассматривать в качестве перспективных материалов для создания антистоксовых люминофоров и оптических термометров.
Ключевые слова
фториды люминофоры синтез нитрат натрия фторид бария редкоземельные элементы
Дата публикации
18.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
3

Библиография

  1. 1. Vogt T. // Neues Jahrb. Mineral. 1914. V. 2. P. 9–15.
  2. 2. Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. М.: Мир, 1976. 439 с. (Feynman R.P., Leighton R.B., Sands M. The Feynman lectures on physics. V. 1. Massachisetts, Palo Alto, London, Addison-Wesley, 1963.)
  3. 3. Sobolev B.P. The Rare Earth Trifluorides. The high-temperature chemistry of the rare earth trifluorides. P.1. Barcelona. Barcelona: Institut d’Estudis Catalans, 2000. 521 p.
  4. 4. Sobolev B.P. The Rare Earth Trifluorides. Introduction to materials science of multicomponent meltal fluoride crystals. P.2. Barcelona. Barcelona: Institut d’Estudis Catalans, 2001. 459 p.
  5. 5. Greis O., Hashke J.M. Rare Earth Fluorides. In: Handbook on the physics and chemistry of rare earths. Gscheidner K.A., Eyring L.R. (eds). V. 5. Amsterdam, N.-Y., Oxford, 1982. Ch. 45, p. 387–460.
  6. 6. Karbowiak M., Cichos J. // J. Alloys Compd. 2016. V. 673. P. 258–264. https://doi.org/10.1016/j.jallcom.2016.02.255
  7. 7. Greis O., Cader M.S.R. // Thermochim. Acta. 1985. V. 87. P. 145–150. https://doi.org/10.1016/0040-6031 (85)85329-6
  8. 8. Heise M., Scholz G., Düvel A., Heitjans P., Kemnitz E. // Solid State Sci. 2016. V. 60. P. 65–74. https://doi.org/10.1016/j.solidstatesciences.2016.08.004
  9. 9. Kuznetsov S.V., Fedorov P.P., Voronov V.V., Samarina K.S., Ermakov R.P., Osiko V.V. // Russ. J. Inorg. Chem. 2010. V. 55. № 4. P. 484–493. https://doi.org/10.1134/S0036023610040029.
  10. 10. Alexandrov V.B., Otroshchenko L.P., Fykin L.E., Bydanov N.N., Sobolev B.P. // Sov. Phys. Crystallogr. 1989. V. 34. P. 896–899.
  11. 11. Otroshchenko L.P., Muradyan L.A., Sobolev B.P., Sarin B.A., Alexandrov V.B. // Butll. Soc. Catalanes Fís. Quím. Mat. Tecnol. 1991. V. 12. P. 383–391.
  12. 12. Sobolev B.P., Golubev A.M., Otroshchenko L.P., Molchanov V.N., Zakalyukin R.M., Ryzhova E.A., Herrero P. // Crystallogr. Rep. 2003. V. 48. P. 944–952.
  13. 13. Sulyanova E.A., Karimov D.N., Sobolev B.P. // Crystals. 2021. V. 11. P. 447. https://doi.org/10.3390/cryst11040447
  14. 14. Sorokin N.I., Sobolev B.P. // Phys. Solid State. 2019. V. 61. № 11. P. 2034–2040. https://doi.org/10.1134/S1063783419110350
  15. 15. Fedorov P.P. // Russ. J. Inorg. Chem. 2000. V. 45. Suppl. 3. P. S268–S291.
  16. 16. Trömel M. // Z. Kristallogr. – Crystal. Mater. 1988. V. 183. № 1–4. P. 15–26. https://doi.org/10.1524/zkri.1988.183.14.15
  17. 17. Третьяков Ю.Д. // Неорг. матер. 1985. Т. 21. № 5. С. 693–701.
  18. 18. Sollich P. // Phys. Rev. E. 1998. V. 58. № 1. P. 738. https://doi.org/10.1103/PhysRevE.58.738
  19. 19. Федоров П.П., Попов П.А. // Наносистемы: физика, химия, математика. 2013. Т. 4. № 1. С. 148–159.
  20. 20. Kaminskii A.A. Laser crystals, their physics and properties. Springer-Verlag, Berlin, 1991. 457 p.
  21. 21. Veselsky K., Loiko P., Eremeev K., Benayad A., Braud A., Sulc J., Jelinkova H., Camy P. // Opt. Lett. 2024. V. 49. P. 5631–5634. https://doi.org/10.1364/OL.532598
  22. 22. Bitam A., Khiari S., Diaf M., Boubekri H., Boulma E., Bensalem C., Guerbous L., Jouart J.P. // Opt. Mater. 2018. V. 82. P. 104–109. https://doi.org/10.1016/j.optmat.2018.05.034
  23. 23. Han H., Zhang Z., Weng X., Liu J., Guan X., Zhang K., Li G. // Rev. Sci. Instrum. 2013. V. 84. 073503. https://doi.org/10.1063/1.4812789
  24. 24. Li X., Deng M., Shi Y., Qi X., Wang S., Lu Y., Du Y., Chen J. // Crystals. 2023. V. 13. P. 1334. https://doi.org/10.3390/cryst13091334
  25. 25. Kawano N., Kato T., Nakauchi D., Takebuchi Y., Fukushima H., Jacobsohn L.G., Yanagida T. // J. Mater. Sci.: Mater. Electron. 2023. V. 34. 962. https://doi.org/10.1007/s10854-023-10343-8
  26. 26. Kato T., Okada G., Fukuda K., Yanagida T. // Radiat. Meas. 2017. V. 106. P. 140–145. https://doi.org/10.1016/j.radmeas.2017.03.032
  27. 27. Zhang F., Ouyang X., Peng X., Yin Z., Guo Y., Zhang J., Ouyang X., Liu B. // Appl. Phys. Lett. 2024. V. 125. № 14. 143503. https://doi.org/10.1063/5.0234568
  28. 28. Su F.H., Chen W., Ding K., Li H. // J. Phys. Chem. A. 2008. V. 112. № 21. P. 4772–4777. https://doi.org/10.1021/jp8008332
  29. 29. Pawlik N., Szpikowska-Sroka B., Pisarska J., Goryczka T., Pisarski W.A. // Materials. 2019. V. 12. № 22. P. 3735. https://doi.org/10.3390/ma12223735
  30. 30. Rebrova N., Zdeb P., Lemanski K., Macalik B., Bezkrovnyi O., Deren P.J. // Inorg. Chem. 2024. V. 63. № 6. P. 3028–3036. https://doi.org/10.1021/acs.inorgchem.3c03821
  31. 31. Milenkovic K., Dacanin Far L., Kuzman S., Antic Z., Circ A., Dramicanin M.D., Milicevic B. // Opt. Express. 2024. V. 32. № 23. P. 41632–41643. https://doi.org/10.1364/oe.542685
  32. 32. Haritha P., Martín I.R., Dwaraka Viswanath C.S., Vijaya N., Venkata Krishnaiah K., Jayasankar C.K., Haranath D., Lavín V., Venkatramu V. // Opt. Mater. 2017. V. 70. P. 16–24. https://doi.org/10.1016/j.optmat.2017.05.002
  33. 33. Vinogradova E.E., Vagapova-Hiiesalu E., Dolgov L., Liivand A., Orlovskii Yu.V. // J. Lumin. 2024. V. 269. P. 120439. https://doi.org/10.1016/j.jlumin.2024.120439
  34. 34. Grzyb T., Balabhadra S., Przybylska D., Węcławiak M. // J. Alloys Compd. 2015. V. 649. P. 606–616. https://doi.org/10.1016/j.jallcom.2015.07.151
  35. 35. Sorokin N.I., Sobolev B.P. // Crystallogr. Rep. 2007. V. 52. № 5. P. 842–863. https://doi.org/10.1134/S1063774507050148
  36. 36. Rongeat C., Anji Reddy M., Witter R., Fichtner M. // J. Phys. Chem. C. 2013. V. 117. № 10. P. 4943–4950. https://doi.org/10.1021/jp3117825
  37. 37. Mori K., Mineshige A., Saito T., Sugiura M., Ishikawa Y., Fujisaki F., Namba K., Kamiyama T., Otomo T., Abe T., Fukunaga T. // ACS Appl. Energy Mater. 2020. V. 3. № 3. P. 2873–2880. https://doi.org/10.1021/acsaem.9b02494
  38. 38. Nikolaichik V.I., Sobolev B.P., Sorokin N.I., Avilov A.S. // Solid State Ionics. 2022. V. 386. 116052. https://doi.org/10.1016/j.ssi.2022.116052
  39. 39. Лившиц А.И., Бузник В.М., Федоров П.П., Соболев Б.П. // Изв. АН СССР. Неорг. матер. 1982. Т. 18. № 1. С. 135–139.
  40. 40. Мацулев А.Н., Бузник В.М., Лившиц А.И., Федоров П.П., Соболев Б.П. // ФТТ. 1988. Т. 30. № 12. С. 3554–3559.
  41. 41. Мацулев А.И., Иванов Ю.Н., Лившиц А.И., Бузник В.М., Федоров П.П., Бучинская И.И., Соболев Б.П. // Ж. неорг. химии. 2000. Т. 45. № 2. С. 296–298.
  42. 42. Zhao T., Hu L., Ren J. // J. Phys. Chem. C 2021. V. 125. № 48. P. 26901–26915. https://doi.org/10.1021/acs.jpcc.1c08154
  43. 43. Preishuber-Pflugl F., Bottke P., Pregartner V., Bitschnau B., Wilkening M. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 9580–9590. https://doi.org/10.1039/c4cp004229
  44. 44. Fedorov P., Mayakova M., Alexandrov A., Voronov V., Kuznetsov S., Baranchikov A., Ivanov V. // Inorganics. 2018. V. 6. № 2. 38. https://doi.org/10.3390/inorganics6020038
  45. 45. Fedorov P.P., Alexandrov A.A. // J. Fluorine Chem. 2019. V. 227. 109374. https://doi.org/10.1016/j.jfluchem.2019.109374
  46. 46. Kieser M., Greis O. // J. Less-Common Met. 1980. V. 71. № 1. P. 63–69. https://doi.org/10.1016/0022-5088 (80)90101-0
  47. 47. Mao Y., Jiang L., Ye R., Yang J., Hu S. // CrystEngComm. 2020. V. 22. P. 564–572. https://doi.org/10.1039/c9ce01687b
  48. 48. Sobolev B.P., Tkachenko N.L. // J. Less-Common Metals. 1982. V. 85. P. 155–170. https://doi.org/10.1016/0022-5088 (82)90067-4
  49. 49. Maksimov B.A., Solans H., Dudka A.P., Genkina E.A., Badrdia-Font M., Buchinskaya I.I., Loshmanov A.A., Golubev A.M., Simonov V.I., Font-Altaba M., Sobolev B.P. // Crystallogr. Rep. 1996. V. 41. № 1. P. 50.
  50. 50. Kieser M., Greis O. // Z. Anorg. Allg. Chem. 1980. V. 469. P. 164–171.
  51. 51. Павлова Л.Н., Федоров П.П., Ольховая Л.А., Икрами Д.Д., Соболев Б.П. // Кристаллография. 1993. Т. 38. № 2. С. 164–169.
  52. 52. Ostwald W. // Z. Phys. Chem. 1897. V. 22. P. 289–330.
  53. 53. ten Wolde P.R., Frenkel D. // Phys. Chem. Chem. Phys. 1999. V. 1. P. 2191–2196. https://doi.org/10.1039/A809346F
  54. 54. Cardew P.T. // Cryst. Growth Des. 2023. V. 23. I. 6. P. 3958–3969. https://doi.org/10.1021/acs.cgd.2c00141
  55. 55. Fedorov P.P., Alexandrov A.A., Luginina A.A, Voronov V.V., Chernova E.V., Kuznetsov S.V. // J. Amer. Ceram. Soc. 2025. V. 108. № 2. e20152. https://doi.org/10.1111/jace.20152
  56. 56. Alexandrov A.A., Petrova L.A., Pominova D.V., Romanishkin I.D., Tsygankova M.V., Kuznetsov S.V., Ivanov V.K., Fedorov P.P. // Appl. Sci. 2023. V. 13. № 18. 9999. https://doi.org/10.3390/app13189999
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека