Президиум РАНДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

Ударопрочность эпоксидных композитов пониженной горючести с наночастицами органобентонита

Код статьи
S3034511125010077-1
DOI
10.7868/S3034511125010077
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 520 / Номер выпуска 1
Страницы
60-64
Аннотация
Впервые установлен максимальный синергетический эффект снижения горючести эпоксидной смолы по кислородному индексу с использованием нестехиометрической смеси меламина и гидрофосфата аммония. Синергетика смеси обусловлена образованием термостойких керамоподобных структур в результате термодеструкции компонентов. В настоящей работе впервые установлен эффект увеличения стойкости до (80 ± 10)% к импульсным нагрузкам с последующим быстрым разрушением (реологический взрыв) для полимерного композита на основе отвержденной эпоксидной смолы с 20%-м содержанием фосфор-азотсодержащих антипиренов (P,N-антипиренов) за счет введения 0.5–1.5% наночастиц органобентонита. Впервые зафиксировано, что импульсы электрического тока, возникающие при сверхбыстром разрушении композита без наночастиц органобентонита, отличаются по частотным характеристикам от композита с введенными наночастицами органобентонита. Для композита без наночастиц органобентонита фиксируется одна полоса радиочастотного излучения с максимумом при 2.4 МГц, а для композита с введенными наночастицами органобентонита – полосы радиочастотного излучения с максимумами при 2.4, 20.9 и 25.3 МГц. Предложен вероятный механизм наблюдаемого эффекта.
Ключевые слова
композит полимер механическая активация частота ток
Дата публикации
18.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
4

Библиография

  1. 1. Zhi M., Yang X., Fan R., Yue S., Zheng L., Liu Q., He Y. // Polym. Degrad. Stab. 2022. V. 201. 109976. https://doi.org/10.1016/j.polymdegradstab.2022.109976
  2. 2. Kamalipour J., Beheshty M.H., Zohuriaan-Mehr M.J. // Iran J. Polym Sci. 2021. V. 34. P. 3–27. https://doi.org/10.22063/jipst.2021.1790
  3. 3. Zaghioul M.M.Y., Zaghioul M.M.Y., Fuseini M. // Polym. Adv. Technol. 2023. V. 34. № 11. P. 3438–3472. https://doi.org/10.1002/pat.6144
  4. 4. Ткачук А.И., Терехов И.В., Афанасьева Е.А. // Труды ВИАМ: электрон. науч.-техн. журн. 2020. № 3 (87). https://doi.org/10.18577/2307-6046-2020-0-3-41-48
  5. 5. Ткачук А.И., Афанасьева Е.А. // Труды ВИАМ: электрон. науч.-техн. журн. 2020. № 4–5 (88). https://doi.org/10.18577/2307-6046-2020-0-45-13-21
  6. 6. Bifulco A., Vargnici C.-D., Rosu L., Mustata F., Rosu D., Gaan S. // Polym. Degrad. Stab. 2022. V. 200. 109962. https://doi.org/10.1016/j.polymdegradstab.2022.109962
  7. 7. Барботько С.Л., Вольный О.С., Боченков М.М., Коробейничев О.П., Шмаков А.Г., Тужиков О.О., Буравов Б.А., Аль-Хамзави А., Тужиков О.И., Соснин Е.А., Палецкий А.А., Чернов А.А., Сагитов А.Р., Куликов И.В., Карпов Е.В., Трубачев С.А. // Химическая физика и мезоскопия. 2024. Т. 26. № 1. С. 69–84. https://doi.org/10.62669/17270227.2024.1.7
  8. 8. Evtushenko Yu.M., Goncharuk G.P., Grigoriev Yu.A., Kuchkina I.O., Shevchenko V.G. // Inorg. Mater. Appl. Res. 2021. V. 11. № 5. P. 65–75. http://dx.doi.org/10.30791/1028-978X-2021-5-65-75
  9. 9. Evtushenko Yu.M., Grigoriev Yu.A., Rudakova T.A., Ozerin A.N. // J. Coat. Techn. Res. 2019. V. 16. № 5. P. 1389–1398. https://doi.org/10.1007/s11998-019-00221-6
  10. 10. Александров А.И., Александров И.А., Прокофьев А.И. // Письма в ЖЭТФ. 2013. Т. 97. № 9–10. С. 630–633. https://doi.org/10.7868/S0370274X13090105
  11. 11. Александров А.И., Шевченко В.Г., Александров И.А. // Письма в ЖТФ. 2020. Т. 46. № 7. С. 43–47. https://doi.org/10.21883/PJTF.2020.07.49220.18119
  12. 12. Broadband dielectric spectroscopy. Kremer F., Schonhals A. (Eds.). New York: Springer International Publishing, 2003. 739 p.
  13. 13. Havriliak S., Negami S.A. // Polymer. 1967. V. 8. P. 161–216. https://doi.org/10.1016/0032-3861 (67)90021-3
  14. 14. Gade S., Weiss U., Peter M., Sause M. // J. Nondestr. Eval. 2014. V. 33. № 4. P. 711–723. https://doi.org/10.1007/s10921-014-0265-5
  15. 15. Dickinson J., Jensen L., Jahan-Latibari A. // J. Mater. Sci. 1984. V. 19. № 5. P. 1510–1516. https://doi.org/10.1007/BF00563046
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека