RAS PresidiumДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

NOVEL CATALYSTS BASED ON MAGNESIUM, ALUMINUM, NICKEL AND COBALT HYDROXO SALTS FOR THE CARBON DIOXIDE CONVERSION OF BIOGENIC ALCOHOLS TO HYDROGEN-CONTAINING GASES

PII
S3034511125020058-1
DOI
10.7868/S3034511125020058
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 521 / Issue number 1
Pages
32-41
Abstract
Catalysts based on alumomagnesium hydroxo salts of hydrotalcite type containing nickel and cobalt ions have been used for the first time for carbon dioxide conversion of biogenic alcohols - ethanol and isobutanol - into hydrogen-containing gases (a mixture of hydrogen and carbon monoxide). At the optimum temperatures of 800-900C, the hydrogen yield in the conversion of ethanol reaches 77-97%, in the conversion of isobutanol - 80-89%.
Keywords
водород углекислотная конверсия этанол изобутанол никель кобальт Al-Mg гидроталькит
Date of publication
08.04.2025
Year of publication
2025
Number of purchasers
0
Views
9

References

  1. 1. Liew W.M., Ainirazali N. // Energy Convers. Manage. 2025. V. 326. 119463. https://doi.org/10.1016/j.enconman.2024.119463
  2. 2. Dedov A.G., Karavaev A.A., Loktev A.S., Osipov A.K. // Petrol. Chem. 2021. V. 61. P. 1139-1157. https://doi.org/10.1134/S0965544121110165
  3. 3. Zlotin S.G., Egorova K.S., Ananikov V.P., Akulov A.A., Varaksin M.V., Chupakhin O.N., Charushin V.N., Bryliakov K.P., Averin A.D., Beletskaya I.P., Dolengovski E.L., Budnikova Yu.H., Sinyashin O.G., Gafurov Z.N., Kantyukov A.O., Yakhvarov D.G., Aksenov A.V., Elinson M.N., Nenajdenko V.G., Chibiryaev A.M., Nesterov N.S., Kozlova E.A., Martyanov O.N., Balova I.A., Sorokoumov V.N., Guk D.A., Beloglazkina E.K., Lemenovskii D.A., Chukicheva I.Yu., Frolova L.L., Izmest'ev E.S., Dvornikova I.A., Popov A.V., Kutchin A.V., Borisova D.M., Kalinina A.A., Muzafarov A.M., Kuchurov I.V., Maximov A.L., Zolotukhina A.V. // Russ. Chem. Rev. 2023. V. 92. № 12. RCR5104. https://doi.org/10.59761/RCR5104
  4. 4. Aziz M.A.A., Setiabudi H.D., Teh L.P., Annuar N.H.R., Jalil A.A. // J. Taiwan Inst. Chem. Eng. 2019. V. 101. P. 139-158. https://doi.org/10.1016/j.jtice.2019.04.047
  5. 5. Wang W., Wang Y. // Int. J. Hydrogen Energy. 2009. V. 34. P. 5382-5389. https://doi.org/10.1016/j.ijhydene.2009.04.05
  6. 6. Bej B., Bepari S., Pradhan N.C., Neogi S. // Catal. Today. 2017. V. 291. P. 58-66. https://doi.org/10.1016/j.cattod.2016.12.010
  7. 7. Arapova M., Smal E., Bespalko Yu., Fedorova V., Valeev K., Cherepanova S., Ischenko A., Sadykov V., Simonov M. // Int. J. Hydrogen Energy. 2021. V. 46. P. 39236-39250. https://doi.org/10.1016/j.ijhydene.2021.09.197
  8. 8. Ramkiran A., Vo D.-V.N., Mahmud M.S. // Int. J. Hydrogen Energy. 2021. V. 46. P. 24845-24854. https://doi.org/10.1016/j.ijhydene.2021.03.144
  9. 9. Wang M., Li F., Dong J., Lin X., Liu X., Wang D., Cai W. // J. Environ. Chem. Eng. 2022. V. 10. 107892. https://doi.org/10.1016/j.jece.2022.107892
  10. 10. Zhukova A., Fionov Yu., Semenova S., Khaibullin S., Chuklina S., Maslakov K., Zhukov D., Isaikina O., Mushtakov A., Fionov A. // J. Phys. Chem. C. 2024. V. 128. P. 20177-20194. https://doi.org/10.1021/acs.jpcc.4c07213
  11. 11. Wang M., Li T., Tian Y., Zhang J., Cai W. // Catal. Lett. 2024. V. 154. P. 3829-3838. https://doi.org/10.1007/s10562-024-04607-z
  12. 12. Li F., Wang M., Zhang J., Lin X., Wang D., Cai W. // Appl. Catal. A. 2022. V. 638. 118605. https://doi.org/10.1016/j.apcata.2022.118605
  13. 13. Dhanala V., Maity S.K., Shee D. // RSC Adv. 2015. V. 5. P. 52522-52532. https://doi.org/10.1039/C5RA03558A
  14. 14. Dhanala V., Maity S.K., Shee D. // RSC Adv. 2013. V. 3. P. 24521-24529. https://doi.org/10.1039/C3RA44705G
  15. 15. Lee I.C., Clair J.G.St., Gamson A.S. // Int. J. Hydrogen Energy. 2012. V. 37. P. 1399-1408. https://doi.org/10.1016/j.ijhydene.2011.09.121
  16. 16. Chakrabarti R., Kruger J.S., Hermann R.J., Schmidt L.D. // RSC Adv. 2012. V. 2. P. 2527-2533. https://doi.org/10.1039/C2RA01348G
  17. 17. Dhanala V., Maity S.K., Shee D. // J. Ind. Eng. Chem. 2015. V. 27. P. 153-163. https://doi.org/10.1016/j.jiec.2014.12.029
  18. 18. Kruger J.S., Chakrabarti R., Hermann R.J., Schmidt L.D. // Appl. Catal. A. 2012. V. 411-412. P. 87-94. https://doi.org/10.1016/j.apcata.2011.10.023
  19. 19. Sharma M.V.P., Akyurtlu J.F., Akyurtlu A. // Int. J. Hydrogen Energy. 2015. V. 40. P. 13368-13378. https://doi.org/10.1016/j.ijhydene.2015.07.113
  20. 20. Moiseev I.I., Loktev A.S., Shlyakhtin O.A., Mazo G.N., Dedov A.G. // Petrol. Chem. 2019. V. 59. Suppl. 1. P. S1-S20. https://doi.org/10.1134/S0965544119130115
  21. 21. Dedov A.G., Loktev A.S., Danilov V.P., Krasnobaeva O.N., Nosova T.A., Mukhin I.E., Baranchikov A.E., Yorov Kh.E., Bykov M.A., Moiseev I.I. // Petrol. Chem. 2020. V. 60. P. 194-203. https://doi.org/10.1134/S0965544120020048
  22. 22. Qiu Y., Chen J., Zhang J. // Front. Chem. Eng. China. 2007. V. 1. P. 167-171. https://doi.org/10.1007/s11705-007-0031-7
  23. 23. Krasnobaeva O.N., Belomestnykh I.P., Nosova T.A., Kondakov D.F., Elizarova T.A., Danilov V.P. // Russ. J. Inorg. Chem. 2015. V. 60. № 4. P. 409-414. https://doi.org/10.1134/S0036023615040099
  24. 24. de Vasconcelos B.R., Minh D.P., Lyczko N., Phan T.S., Sharrock P., Nzihou A. // Fuel. 2018. V. 226. P. 195-203. https://doi.org/10.1016/j.fuel.2018.04.017
  25. 25. Yuvasravana R., George P.P., Devanna N. // Inter. J. Innovative Res. Sci. Eng. Technol. 2017. V. 6. P. 11256-11265. https://doi.org/10.15680/IJIRSET.2017.0606208
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library