- PII
- S3034511125020058-1
- DOI
- 10.7868/S3034511125020058
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 521 / Issue number 1
- Pages
- 32-41
- Abstract
- Catalysts based on alumomagnesium hydroxo salts of hydrotalcite type containing nickel and cobalt ions have been used for the first time for carbon dioxide conversion of biogenic alcohols - ethanol and isobutanol - into hydrogen-containing gases (a mixture of hydrogen and carbon monoxide). At the optimum temperatures of 800-900C, the hydrogen yield in the conversion of ethanol reaches 77-97%, in the conversion of isobutanol - 80-89%.
- Keywords
- водород углекислотная конверсия этанол изобутанол никель кобальт Al-Mg гидроталькит
- Date of publication
- 08.04.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 9
References
- 1. Liew W.M., Ainirazali N. // Energy Convers. Manage. 2025. V. 326. 119463. https://doi.org/10.1016/j.enconman.2024.119463
- 2. Dedov A.G., Karavaev A.A., Loktev A.S., Osipov A.K. // Petrol. Chem. 2021. V. 61. P. 1139-1157. https://doi.org/10.1134/S0965544121110165
- 3. Zlotin S.G., Egorova K.S., Ananikov V.P., Akulov A.A., Varaksin M.V., Chupakhin O.N., Charushin V.N., Bryliakov K.P., Averin A.D., Beletskaya I.P., Dolengovski E.L., Budnikova Yu.H., Sinyashin O.G., Gafurov Z.N., Kantyukov A.O., Yakhvarov D.G., Aksenov A.V., Elinson M.N., Nenajdenko V.G., Chibiryaev A.M., Nesterov N.S., Kozlova E.A., Martyanov O.N., Balova I.A., Sorokoumov V.N., Guk D.A., Beloglazkina E.K., Lemenovskii D.A., Chukicheva I.Yu., Frolova L.L., Izmest'ev E.S., Dvornikova I.A., Popov A.V., Kutchin A.V., Borisova D.M., Kalinina A.A., Muzafarov A.M., Kuchurov I.V., Maximov A.L., Zolotukhina A.V. // Russ. Chem. Rev. 2023. V. 92. № 12. RCR5104. https://doi.org/10.59761/RCR5104
- 4. Aziz M.A.A., Setiabudi H.D., Teh L.P., Annuar N.H.R., Jalil A.A. // J. Taiwan Inst. Chem. Eng. 2019. V. 101. P. 139-158. https://doi.org/10.1016/j.jtice.2019.04.047
- 5. Wang W., Wang Y. // Int. J. Hydrogen Energy. 2009. V. 34. P. 5382-5389. https://doi.org/10.1016/j.ijhydene.2009.04.05
- 6. Bej B., Bepari S., Pradhan N.C., Neogi S. // Catal. Today. 2017. V. 291. P. 58-66. https://doi.org/10.1016/j.cattod.2016.12.010
- 7. Arapova M., Smal E., Bespalko Yu., Fedorova V., Valeev K., Cherepanova S., Ischenko A., Sadykov V., Simonov M. // Int. J. Hydrogen Energy. 2021. V. 46. P. 39236-39250. https://doi.org/10.1016/j.ijhydene.2021.09.197
- 8. Ramkiran A., Vo D.-V.N., Mahmud M.S. // Int. J. Hydrogen Energy. 2021. V. 46. P. 24845-24854. https://doi.org/10.1016/j.ijhydene.2021.03.144
- 9. Wang M., Li F., Dong J., Lin X., Liu X., Wang D., Cai W. // J. Environ. Chem. Eng. 2022. V. 10. 107892. https://doi.org/10.1016/j.jece.2022.107892
- 10. Zhukova A., Fionov Yu., Semenova S., Khaibullin S., Chuklina S., Maslakov K., Zhukov D., Isaikina O., Mushtakov A., Fionov A. // J. Phys. Chem. C. 2024. V. 128. P. 20177-20194. https://doi.org/10.1021/acs.jpcc.4c07213
- 11. Wang M., Li T., Tian Y., Zhang J., Cai W. // Catal. Lett. 2024. V. 154. P. 3829-3838. https://doi.org/10.1007/s10562-024-04607-z
- 12. Li F., Wang M., Zhang J., Lin X., Wang D., Cai W. // Appl. Catal. A. 2022. V. 638. 118605. https://doi.org/10.1016/j.apcata.2022.118605
- 13. Dhanala V., Maity S.K., Shee D. // RSC Adv. 2015. V. 5. P. 52522-52532. https://doi.org/10.1039/C5RA03558A
- 14. Dhanala V., Maity S.K., Shee D. // RSC Adv. 2013. V. 3. P. 24521-24529. https://doi.org/10.1039/C3RA44705G
- 15. Lee I.C., Clair J.G.St., Gamson A.S. // Int. J. Hydrogen Energy. 2012. V. 37. P. 1399-1408. https://doi.org/10.1016/j.ijhydene.2011.09.121
- 16. Chakrabarti R., Kruger J.S., Hermann R.J., Schmidt L.D. // RSC Adv. 2012. V. 2. P. 2527-2533. https://doi.org/10.1039/C2RA01348G
- 17. Dhanala V., Maity S.K., Shee D. // J. Ind. Eng. Chem. 2015. V. 27. P. 153-163. https://doi.org/10.1016/j.jiec.2014.12.029
- 18. Kruger J.S., Chakrabarti R., Hermann R.J., Schmidt L.D. // Appl. Catal. A. 2012. V. 411-412. P. 87-94. https://doi.org/10.1016/j.apcata.2011.10.023
- 19. Sharma M.V.P., Akyurtlu J.F., Akyurtlu A. // Int. J. Hydrogen Energy. 2015. V. 40. P. 13368-13378. https://doi.org/10.1016/j.ijhydene.2015.07.113
- 20. Moiseev I.I., Loktev A.S., Shlyakhtin O.A., Mazo G.N., Dedov A.G. // Petrol. Chem. 2019. V. 59. Suppl. 1. P. S1-S20. https://doi.org/10.1134/S0965544119130115
- 21. Dedov A.G., Loktev A.S., Danilov V.P., Krasnobaeva O.N., Nosova T.A., Mukhin I.E., Baranchikov A.E., Yorov Kh.E., Bykov M.A., Moiseev I.I. // Petrol. Chem. 2020. V. 60. P. 194-203. https://doi.org/10.1134/S0965544120020048
- 22. Qiu Y., Chen J., Zhang J. // Front. Chem. Eng. China. 2007. V. 1. P. 167-171. https://doi.org/10.1007/s11705-007-0031-7
- 23. Krasnobaeva O.N., Belomestnykh I.P., Nosova T.A., Kondakov D.F., Elizarova T.A., Danilov V.P. // Russ. J. Inorg. Chem. 2015. V. 60. № 4. P. 409-414. https://doi.org/10.1134/S0036023615040099
- 24. de Vasconcelos B.R., Minh D.P., Lyczko N., Phan T.S., Sharrock P., Nzihou A. // Fuel. 2018. V. 226. P. 195-203. https://doi.org/10.1016/j.fuel.2018.04.017
- 25. Yuvasravana R., George P.P., Devanna N. // Inter. J. Innovative Res. Sci. Eng. Technol. 2017. V. 6. P. 11256-11265. https://doi.org/10.15680/IJIRSET.2017.0606208