- PII
- S30345111S2686953525030014-1
- DOI
- 10.7868/S3034511125030014
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 522 / Issue number 1
- Pages
- 3-13
- Abstract
- A series of new lanthanide metal-organic coordination polymers with 4,7-di(4-carboxypyrazol-1-yl)-2,1,3-benzoxadiazole were synthesized. It was established that, depending on the position of element in the lanthanide series, products of four structural types are formed. In the case of the Ce cation, the coordination polymer represents 1D chains, for Pr–Er cations it is a 2D layered structure with layer concatenation, and for the late lanthanides Tm–Lu two types of layered coordination polymers were identified, differing in the carboxylate group coordination mode and the number of coordinated water molecules in the coordination sphere of the central ion. The coordination polymers of Sm, Eu, Gd, and Tb exhibit only ligand-centered luminescence with a maximum in the range of 540–550 nm, while the luminescence spectrum of Nd coordination polymer additionally contains characteristic bands of metal-centered emission in the near infrared range at 878, 1054, 1330, and 1568 nm.
- Keywords
- лантаноиды 2,1,3-бензохалькогенадиазолы 2,1,3-бензоксадиазол люминесценция пиразол металл-органические координационные полимеры
- Date of publication
- 01.06.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 20
References
- 1. Sukhikh T.S., Ogienko D.S., Bashirov D.A., Konchenko S.N. // Russ. Chem. Bull. 2019. V. 68. P. 651–661. https://doi.org/10.1007/s11172-019-2472-9
- 2. Chugunova E.A., Gazizov A.S., Burilov A.R., Yusupova L.M., Pudovik M.A., Sinyashin O.G. // Russ. Chem. Bull. 2019. V. 68. P. 887–910. https://doi.org/10.1007/s11172-019-2503-6
- 3. Haberhauer G., Gleiter R. // Angew. Chem. Int. Ed. 2020. V. 59. P. 21236–21243. https://doi.org/10.1002/anie.202010309
- 4. Alfuth J., Zadykowicz B., Sikorski A., Połoński T., Eichstaedt K., Olszewska T. // Materials. 2020. V. 13. 4908. https://doi.org/10.3390/ma13214908
- 5. Savkov B.Y., Duritsyn R.V., Konchenko S.N., Sukhikh T.S. // J. Struct. Chem. 2024. V. 65. P. 1679–1691. https://doi.org/10.1134/S0022476624090014
- 6. Radiush E.A., Wang H., Chulanova E.A., Ponomareva Y.A., Li B., Wei Q.Y., Salnikov G.E., Petrakova S.Yu., Semenov N.A., Zibarev A.V. // Chempluschem. 2023. V. 88. e202300523. https://doi.org/10.1002/cplu.202300523
- 7. Pushkarevsky N.A., Smolentsev A.I., Wang H., Shishova V.E., Chulanova E.A., Wei Q., Balmohammadi Y., Radiush E.A., Grabowsky S., Beckmann J., Woollins J.D., Semenov N.A., Zibarev A.V. // Cryst. Growth Des. 2024. V. 24. P. 5236–5250. https://doi.org/10.1021/acs.cgd.4c00475
- 8. Bala I., Yadav R.A.K., Devi M., De J., Singh N., Kailasam K., Jayakumar J., Jou J.H., Cheng C.H., Pal S.K. // J. Mater. Chem. C. 2020. V. 8. P. 17009–17015. https://doi.org/10.1039/d0tc04080k
- 9. Zhang D., Yang T., Xu H., Miao Y., Chen R., Shinar R., Shinar J., Wang H., Xu B., Yu J. // J. Mater. Chem. C. 2021. V. 9. P. 4921–4926. https://doi.org/10.1039/d1tc00249j
- 10. Zhu Z., Wei X., Liang W. // J. Comput. Chem. 2024. V. 45. P. 1603–1613. https://doi.org/10.1002/jcc.27352
- 11. Kim H., Reddy M.R., Kim H., Choi D., Kim C., Seo S.Y. // Chempluschem. 2017. V. 82. P. 742–749. https://doi.org/10.1002/cplu.201700070
- 12. Li M., An C., Pisula W., Müllen K. // Acc. Chem. Res. 2018. V. 51. P. 1196–1205. https://doi.org/10.1021/acs.accounts.8b00025
- 13. Keles D., Erer M.C., Bolayir E., Cevher S.C., Hizalan G., Toppare L., Cirpan A. // Renew. Energy. 2019. V. 139. P. 1184–1193. https://doi.org/10.1016/j.renene.2019.03.018
- 14. Karakus M., Apaydn D.H., Yldz D.E., Toppare L., Cirpan A. // Polymer. 2012. V. 53. P. 1198–1202. https://doi.org/10.1016/j.polymer.2012.01.030
- 15. Neto B.A.D., Sodre E.R., Guido B.C., De Souza P.E.N., MacHado D.F.S., Carvalho-Silva V.H., Chaker J.A., Gatto C.C., Correa J.R., De A. Fernandes T. // J. Org. Chem. 2020. V. 85. P. 12614–12634. https://doi.org/10.1021/acs.joc.0c01805
- 16. Komissarova E.A., Kuklin S.A., Slesarenko N.A., Latypova A.F., Akbulatov A.F., Ozerova V.V., Kevreva M.N., Emelianov N.A., Frolova L.A., Troshin P.A. // Mendeleev Commun. 2025. V. 35. P. 327–330. https://doi.org/10.71267/mencom.7632
- 17. Sukhikh T.S., Khisamov R.M., Bashirov D.A., Kovtunova L.M., Kuratieva N.V., Konchenko S.N. // J. Struct. Chem. 2019. V. 60. P. 1670–1680. https://doi.org/10.1134/S0022476619100135
- 18. Pavlov D.I., Ryadun A.A., Fedin V.P., Potapov A.S. // J. Struct. Chem. 2024. V. 65. P. 2567–2578. https://doi.org/10.1134/S0022476624120199
- 19. Pavlov D.I., Yu X., Ryadun A.A., Fedin V.P., Potapov A.S. // Chemosensors. 2023. V. 11. 52. https://doi.org/10.3390/chemosensors11010052
- 20. Pavlov D.I., Sukhikh T.S., Ryadun A.A., Matveevskaya V.V., Kovalenko K.A., Benassi E., Fedin V.P., Potapov A.S. // J. Mater. Chem. C. 2022. V. 10. P. 5567–5575. https://doi.org/10.1039/D1TC05488K
- 21. Li J., Zhu Y., Xu H., Zheng T.F., Liu S.J., Wu Y., Chen J.L., Chen Y.Q., Wen H.R. // Inorg. Chem. 2022. V. 61. P. 3607–3615, https://doi.org/10.1021/acs.inorgchem.1c03661
- 22. Pavlov D.I., Ryadun A.A., Fedin V.P., Yu X., Potapov A.S. // Cryst. Growth Des. 2024. V. 24. P. 9415–9424. https://doi.org/10.1021/acs.cgd.4c00797
- 23. Pavlova V.V., Pavlov D.I., Ryadun A.A., Sadykov E.H., Guselnikova T.Y., Fedin V.P., Yu X., Potapov A.S. // Appl. Organomet. Chem. 2025. V. 39. e70091. https://doi.org/10.1002/aoc.70091
- 24. Xiong G., Xu W., Liang L., Huang K., Zhang X., Qin D. // J. Mol. Struct. 2024. V. 1303. 137538. https://doi.org/10.1016/j.molstruc.2024.137538
- 25. Jin J.K., Wu K., Liu X.Y., Huang G.Q., Huang Y.L., Luo D., Xie M., Zhao Y., Lu W., Zhou X.P., He J., Li D. // J. Am. Chem. Soc. 2021. V. 143. P. 21340–21349. https://doi.org/10.1021/jacs.1c10008
- 26. Li R., Byun J., Huang W., Ayed C., Wang L., Zhang K.A.I. // ACS Catal. 2018. V. 8. P. 4735–4750. https://doi.org/10.1021/acscatal.8b00407
- 27. Wei N., Zhang Y.R., Han Z.B. // CrystEngComm. 2013. V. 15. P. 8883–8886. https://doi.org/10.1039/c3ce41308j
- 28. Pavlov D.I., Ryadun A.A., Potapov A.S. // Molecules. 2021. V. 26. 7392. https://doi.org/10.3390/molecules26237392
- 29. Dudko E.R., Pavlov D.I., Ryadun A.A., Guselnikova T.Y., Fedin V.P., Yu X., Potapov A.S. // Opt. Mater. 2025. V. 160. 116779. https://doi.org/10.1016/j.optmat.2025.116779
- 30. CrysAlisPro, Agilent Technologies, Version 1.171.34.49 (Release 20-01-2011 CrysAlis171.NET)
- 31. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3–8. https://doi.org/10.1107/S2053273314026370
- 32. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3–8. https://doi.org/10.1107/S2053229614024218
- 33. Hübschle C.B., Sheldrick G.M., Dittrich B. // J. Appl. Crystallogr. 2011. V. 44. P. 1281–1284. https://doi.org/10.1107/S0021889811043202
- 34. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. 1900184. https://doi.org/10.1002/crat.201900184
- 35. Lazarenko V.A., Dorovatovskii P.V., Zubavichus Y.V., Burlov A.S., Koshchienko Y.V., Vlasenko V.G., Khrustalev V.N. // Crystals. 2017. V. 7. 325. https://doi.org/10.3390/cryst7110325
- 36. Kabsch W. // Acta Crystallogr. D. 2010. V. 66. P. 125–132. https://doi.org/10.1107/S0907444909047337
- 37. Kabsch W. // Acta Crystallogr. D. 2010. V. 66. P. 133–144. https://doi.org/10.1107/S0907444909047374
- 38. Dudko E.R., Pavlov D.I., Ryadun A.A., Guselnikova T.Y., Fedin V.P., Yu X., Potapov A.S. // Appl. Organomet. Chem. 2025. V. 39. e70082. https://doi.org/10.1002/aoc.70082
- 39. Latva M., Takalo H., Mukkala V.-M., Matachescu C., Rodríguez-Ubis J.C., Kankare J. // J. Lumin. 1997. V. 75. P. 149–169. https://doi.org/10.1016/S0022-2313 (97)00113-0
- 40. Toikka Yu.N., Badikov A.R., Bogachev N.A., Kolesnikov I.E., Skripkin M.Yu., Orlova S.N., Mereshchenko A.S. // Mendeleev Commun. 2024. V. 34. P. 634–636. https://doi.org/10.1016/j.mencom.2024.09.003
- 41. Sanzhenakova E.A., Smirnova K.S., Pozdnyakov I.P., Berezin A.S., Potkin V.I., Lider E.V. // Dalton Trans. 2025. V. 54. P. 7810–7818. https://doi.org/10.1039/D5DT00127G