RAS PresidiumДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

STRUCTURAL DIVERSITY AND LUMINESCENT PROPERTIES OF LANTHANIDE COORDINATION POLYMERS WITH 4,7-DI(4-CARBOXYPYRAZOLE-1-YL)-2,1,3-BENZOXADIAZOLE

PII
S30345111S2686953525030014-1
DOI
10.7868/S3034511125030014
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 522 / Issue number 1
Pages
3-13
Abstract
A series of new lanthanide metal-organic coordination polymers with 4,7-di(4-carboxypyrazol-1-yl)-2,1,3-benzoxadiazole were synthesized. It was established that, depending on the position of element in the lanthanide series, products of four structural types are formed. In the case of the Ce cation, the coordination polymer represents 1D chains, for Pr–Er cations it is a 2D layered structure with layer concatenation, and for the late lanthanides Tm–Lu two types of layered coordination polymers were identified, differing in the carboxylate group coordination mode and the number of coordinated water molecules in the coordination sphere of the central ion. The coordination polymers of Sm, Eu, Gd, and Tb exhibit only ligand-centered luminescence with a maximum in the range of 540–550 nm, while the luminescence spectrum of Nd coordination polymer additionally contains characteristic bands of metal-centered emission in the near infrared range at 878, 1054, 1330, and 1568 nm.
Keywords
лантаноиды 2,1,3-бензохалькогенадиазолы 2,1,3-бензоксадиазол люминесценция пиразол металл-органические координационные полимеры
Date of publication
01.06.2025
Year of publication
2025
Number of purchasers
0
Views
20

References

  1. 1. Sukhikh T.S., Ogienko D.S., Bashirov D.A., Konchenko S.N. // Russ. Chem. Bull. 2019. V. 68. P. 651–661. https://doi.org/10.1007/s11172-019-2472-9
  2. 2. Chugunova E.A., Gazizov A.S., Burilov A.R., Yusupova  L.M., Pudovik M.A., Sinyashin O.G. // Russ. Chem. Bull. 2019. V. 68. P. 887–910. https://doi.org/10.1007/s11172-019-2503-6
  3. 3. Haberhauer G., Gleiter R. // Angew. Chem. Int. Ed. 2020. V. 59. P. 21236–21243. https://doi.org/10.1002/anie.202010309
  4. 4. Alfuth J., Zadykowicz B., Sikorski A., Połoński T., Eichstaedt K., Olszewska T. // Materials. 2020. V. 13. 4908. https://doi.org/10.3390/ma13214908
  5. 5. Savkov B.Y., Duritsyn R.V., Konchenko S.N., Sukhikh T.S. // J. Struct. Chem. 2024. V. 65. P. 1679–1691. https://doi.org/10.1134/S0022476624090014
  6. 6. Radiush E.A., Wang H., Chulanova E.A., Ponomareva Y.A., Li B., Wei Q.Y., Salnikov G.E., Petrakova S.Yu., Semenov N.A., Zibarev A.V. // Chempluschem. 2023. V. 88. e202300523. https://doi.org/10.1002/cplu.202300523
  7. 7. Pushkarevsky N.A., Smolentsev A.I., Wang H., Shishova V.E., Chulanova E.A., Wei Q., Balmohammadi Y., Radiush E.A., Grabowsky S., Beckmann J., Woollins J.D., Semenov N.A., Zibarev A.V. // Cryst. Growth Des. 2024. V. 24. P. 5236–5250. https://doi.org/10.1021/acs.cgd.4c00475
  8. 8. Bala I., Yadav R.A.K., Devi M., De J., Singh N., Kailasam K., Jayakumar J., Jou J.H., Cheng C.H., Pal S.K. // J. Mater. Chem. C. 2020. V. 8. P. 17009–17015. https://doi.org/10.1039/d0tc04080k
  9. 9. Zhang D., Yang T., Xu H., Miao Y., Chen R., Shinar R., Shinar J., Wang H., Xu B., Yu J. // J. Mater. Chem. C. 2021. V. 9. P. 4921–4926. https://doi.org/10.1039/d1tc00249j
  10. 10. Zhu Z., Wei X., Liang W. // J. Comput. Chem. 2024. V. 45. P. 1603–1613. https://doi.org/10.1002/jcc.27352
  11. 11. Kim H., Reddy M.R., Kim H., Choi D., Kim C., Seo S.Y. // Chempluschem. 2017. V. 82. P. 742–749. https://doi.org/10.1002/cplu.201700070
  12. 12. Li M., An C., Pisula W., Müllen K. // Acc. Chem. Res. 2018. V. 51. P. 1196–1205. https://doi.org/10.1021/acs.accounts.8b00025
  13. 13. Keles D., Erer M.C., Bolayir E., Cevher S.C., Hizalan G., Toppare L., Cirpan A. // Renew. Energy. 2019. V. 139. P. 1184–1193. https://doi.org/10.1016/j.renene.2019.03.018
  14. 14. Karakus M., Apaydn D.H., Yldz D.E., Toppare L., Cirpan A. // Polymer. 2012. V. 53. P. 1198–1202. https://doi.org/10.1016/j.polymer.2012.01.030
  15. 15. Neto B.A.D., Sodre E.R., Guido B.C., De Souza P.E.N., MacHado D.F.S., Carvalho-Silva V.H., Chaker J.A., Gatto C.C., Correa J.R., De A. Fernandes T. // J. Org. Chem. 2020. V. 85. P. 12614–12634. https://doi.org/10.1021/acs.joc.0c01805
  16. 16. Komissarova E.A., Kuklin S.A., Slesarenko N.A., Latypova A.F., Akbulatov A.F., Ozerova V.V., Kevreva M.N., Emelianov N.A., Frolova L.A., Troshin P.A. // Mendeleev Commun. 2025. V. 35. P. 327–330. https://doi.org/10.71267/mencom.7632
  17. 17. Sukhikh T.S., Khisamov R.M., Bashirov D.A., Kovtunova L.M., Kuratieva N.V., Konchenko S.N. // J. Struct. Chem. 2019. V. 60. P. 1670–1680. https://doi.org/10.1134/S0022476619100135
  18. 18. Pavlov D.I., Ryadun A.A., Fedin V.P., Potapov A.S. // J. Struct. Chem. 2024. V. 65. P. 2567–2578. https://doi.org/10.1134/S0022476624120199
  19. 19. Pavlov D.I., Yu X., Ryadun A.A., Fedin V.P., Potapov A.S. // Chemosensors. 2023. V. 11. 52. https://doi.org/10.3390/chemosensors11010052
  20. 20. Pavlov D.I., Sukhikh T.S., Ryadun A.A., Matveevskaya V.V., Kovalenko K.A., Benassi E., Fedin V.P., Potapov A.S. // J. Mater. Chem. C. 2022. V. 10. P. 5567–5575. https://doi.org/10.1039/D1TC05488K
  21. 21. Li J., Zhu Y., Xu H., Zheng T.F., Liu S.J., Wu Y., Chen J.L., Chen Y.Q., Wen H.R. // Inorg. Chem. 2022. V. 61. P. 3607–3615, https://doi.org/10.1021/acs.inorgchem.1c03661
  22. 22. Pavlov D.I., Ryadun A.A., Fedin V.P., Yu X., Potapov A.S. // Cryst. Growth Des. 2024. V. 24. P. 9415–9424. https://doi.org/10.1021/acs.cgd.4c00797
  23. 23. Pavlova V.V., Pavlov D.I., Ryadun A.A., Sadykov E.H., Guselnikova T.Y., Fedin V.P., Yu X., Potapov A.S. // Appl. Organomet. Chem. 2025. V. 39. e70091. https://doi.org/10.1002/aoc.70091
  24. 24. Xiong G., Xu W., Liang L., Huang K., Zhang X., Qin D. // J. Mol. Struct. 2024. V. 1303. 137538. https://doi.org/10.1016/j.molstruc.2024.137538
  25. 25. Jin J.K., Wu K., Liu X.Y., Huang G.Q., Huang Y.L., Luo D., Xie M., Zhao Y., Lu W., Zhou X.P., He J., Li D. // J. Am. Chem. Soc. 2021. V. 143. P. 21340–21349. https://doi.org/10.1021/jacs.1c10008
  26. 26. Li R., Byun J., Huang W., Ayed C., Wang L., Zhang K.A.I. // ACS Catal. 2018. V. 8. P. 4735–4750. https://doi.org/10.1021/acscatal.8b00407
  27. 27. Wei N., Zhang Y.R., Han Z.B. // CrystEngComm. 2013. V. 15. P. 8883–8886. https://doi.org/10.1039/c3ce41308j
  28. 28. Pavlov D.I., Ryadun A.A., Potapov A.S. // Molecules. 2021. V. 26. 7392. https://doi.org/10.3390/molecules26237392
  29. 29. Dudko E.R., Pavlov D.I., Ryadun A.A., Guselnikova T.Y., Fedin V.P., Yu X., Potapov A.S. // Opt. Mater. 2025. V. 160. 116779. https://doi.org/10.1016/j.optmat.2025.116779
  30. 30. CrysAlisPro, Agilent Technologies, Version 1.171.34.49 (Release 20-01-2011 CrysAlis171.NET)
  31. 31. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3–8. https://doi.org/10.1107/S2053273314026370
  32. 32. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P.  3–8. https://doi.org/10.1107/S2053229614024218
  33. 33. Hübschle C.B., Sheldrick G.M., Dittrich B. // J. Appl. Crystallogr. 2011. V. 44. P. 1281–1284. https://doi.org/10.1107/S0021889811043202
  34. 34. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. 1900184. https://doi.org/10.1002/crat.201900184
  35. 35. Lazarenko V.A., Dorovatovskii P.V., Zubavichus Y.V., Burlov A.S., Koshchienko Y.V., Vlasenko V.G., Khrustalev V.N. // Crystals. 2017. V. 7. 325. https://doi.org/10.3390/cryst7110325
  36. 36. Kabsch W. // Acta Crystallogr. D. 2010. V. 66. P. 125–132. https://doi.org/10.1107/S0907444909047337
  37. 37. Kabsch W. // Acta Crystallogr. D. 2010. V. 66. P. 133–144. https://doi.org/10.1107/S0907444909047374
  38. 38. Dudko E.R., Pavlov D.I., Ryadun A.A., Guselnikova T.Y., Fedin V.P., Yu X., Potapov A.S. // Appl. Organomet. Chem. 2025. V. 39. e70082. https://doi.org/10.1002/aoc.70082
  39. 39. Latva M., Takalo H., Mukkala V.-M., Matachescu C., Rodríguez-Ubis J.C., Kankare J. // J. Lumin. 1997. V. 75. P. 149–169. https://doi.org/10.1016/S0022-2313 (97)00113-0
  40. 40. Toikka Yu.N., Badikov A.R., Bogachev N.A., Kolesnikov I.E., Skripkin M.Yu., Orlova S.N., Mereshchenko A.S. // Mendeleev Commun. 2024. V. 34. P. 634–636. https://doi.org/10.1016/j.mencom.2024.09.003
  41. 41. Sanzhenakova E.A., Smirnova K.S., Pozdnyakov I.P., Berezin A.S., Potkin V.I., Lider E.V. // Dalton Trans. 2025. V. 54. P. 7810–7818. https://doi.org/10.1039/D5DT00127G
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library