- Код статьи
- S303451125040019-1
- DOI
- 10.7868/S303451125040019
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 523 / Номер выпуска 1
- Страницы
- 3-10
- Аннотация
- В статье рассмотрены результаты исследования влияния состава реакционной среды (дистиллированная вода или водные растворы ацетонитрила и гипофосфита натрия) на процесс полимеризации элементного фосфора под воздействием ускоренных электронов. Проведение полимеризации в водной среде исключает прямой контакт с воздухом, что делает процесс более безопасным, а добавление в воду различных химических веществ позволяет изменять параметры процесса. Показано, что в среде водных растворов ацетонитрила и гипофосфита натрия конверсия фосфора повышается на 7%, а на начальной стадии процесса наблюдается увеличение скорости полимеризации, по сравнению с экспериментами при использовании воды в качестве реакционной среды. Состав и строение полученных в ходе электронно-лучевой полимеризации фосфорсодержащих полимеров охарактеризованы методом времяпролетной масс-спектрометрии с матрично-активированной лазерной десорбцией/ионизацией (MALDI-TOF).
- Ключевые слова
- фосфор фосфорсодержащие полимеры ускоренные электроны химия высоких энергий MALDI-TOF
- Дата публикации
- 01.08.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 32
Библиография
- 1. Tian H., Wang J., Lai G., Dou Y., Gao J., Duan Z., Feng X., Wu Q., He X., Yao L., Zeng L., Liu Y., Yang X., Zhao J., Zhuang S., Shi J., Qu G., Yu X.-F., Chu P.K., Jiang G. // Chem. Soc. Rev. 2023. V. 52. № 16. P. 5388–5484. https://doi.org/10.1039/D2CS01018F
- 2. Han Z., Yang X., Yao H., Ran C., Guan C., Lu K., Yang C., Fu L. // Energy Technol. 2025. V. 13. № 1. 2401320. http://dx.doi.org/10.1002/entc.202401320
- 3. Zhou J., Ye W., Lian X., Shi Q., Liu Y., Yang X., Liu L., Wang D., Choi J.-H., Sun J., Yang R., Wang M.-S., Runmeil M.H. // Energy Storage Mater. 2022. V. 46. P. 20–28. https://doi.org/10.1016/j.ensm.2021.12.042
- 4. Sun Y., Wang L., Li Y., Li Y., Lee H.R., Pei A., He X., Cui Y. // Joule. 2019. V. 3. № 4. P. 1080–1093. https://doi.org/10.1016/j.joule.2019.01.017
- 5. Bai J., Li Z., Wang X., Swierczek K., Wu C., Zhao H. // Energy Mater. Adv. 2024. V. 5. 0086. https://doi.org/10.34133/energymatadv.0086
- 6. Strumolo M.J., Erenin D.B., Wang S., Mora Perez C., Prezhdo O.V., Figueroa J.S., Brutchev R.L. // Inorg. Chem. 2023. V. 62. № 16. P. 6197–6201. https://doi.org/10.1021/acs.inorgchem.3c00370
- 7. Smith J.B., Hagaman D., Ji H.-F. // Nanotechnology. 2016. V. 27. № 21. 215602. https://doi.org/10.1088/0957-4484/27/21/215602
- 8. Yilmaz O., Kalyon H.Y., Gencten M., Sahin Y. // J. Energy Storage. 2024. V. 79. 110133. https://doi.org/10.1016/j.est.2023.110133
- 9. Yuan H., Zhao Y., Wang Y., Duan J., He B., Tang Q. // J. Power Sources. 2019. V. 410–411. P. 53–58. https://doi.org/10.1016/j.jpowsour.2018.11.011
- 10. Fung C.-M., Er C.-C., Tan L.-L., Mohamed A.R., Chai S.-P. // Chem. Rev. 2022. V. 122. № 3. P. 3879–3965. https://doi.org/10.1021/acs.chemrev1c00068
- 11. He D., Dong J., Zhang Y.-N., Zhang S., Zhang Y.-N., Qu J. // Catalysts. 2025. V. 15. № 3. 218. https://doi.org/10.3390/catal15030218
- 12. Gibertini E., Carosio F., Aykanat K., Accogli A., Panzeri G., Magagnin L. // Surf. Interfaces. 2021. V. 25. 101252. https://doi.org/10.1016/j.surfin.2021.101252
- 13. Tarasova N., Zanin A., Sobolev P., Ivanov A. // Phosphorus Sulfur Silicon Relat. Elem. 2021. V. 197. № 5–6. P. 608–609. https://doi.org/10.1080/10426507.2021.2011885
- 14. Tarasova N.P., Balitskii V.Yu. // J. Appl. Chem. USSR. 1991. V. 64. № 6. P. 1035–1040.
- 15. Tarasova N.P., Smetannikov Yu.V., Vilesov A.S., Shevchenko V.P., Byakov V.M. // Dokl. Phys. Chem. 2008. V. 423. P. 335–338. https://doi.org/10.1134/S0012501608120051
- 16. Yang Z., Li W., Huang H., Ren S., Men Y., Li F., Yu X., Luo Q. // Talanta. 2022. V. 237. 122978. https://doi.org/10.1016/j.talanta.2021.122978
- 17. O'Rourke M.B., Smith C.C., De La Monte S.M., Sutherland G.T., Padula M.P. // Curr. Protoe. Mol. Biol. 2019. V. 126. № 1. e86. https://doi.org/10.1002/cppnb.86
- 18. Zhang W., Andersson J.T., Räder H.J., Müller K. // Carbon. 2015. V. 95. P. 672–680. https://doi.org/10.1016/j.carbon.2015.08.057
- 19. Tapacoga H.I., Janun A.A., Kapaaee C.E., Keenophonne H.A., Haanao A.E. // Успехи в химии и химической технологии. 2024. T. 38. № 1. С. 38–41.