RAS PresidiumДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

ELECTRON BEAM POLYMERIZATION OF PHOSPHORUS: MALDI-TOF ANALYSIS OF PRODUCT STRUCTURE

PII
S303451125040019-1
DOI
10.7868/S303451125040019
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 523 / Issue number 1
Pages
3-10
Abstract
The article discusses the results of a study of the effect of the reaction medium composition (distilled water or aqueous solutions of acetonitrile and sodium hypophosphite) on the process of elemental phosphorus polymerization under the influence of accelerated electrons. Carrying out polymerization in an aqueous medium eliminates direct contact with air, which makes the process safer, and adding various chemicals to the solution allows to control the process parameters. It is shown that in an aqueous solution of acetonitrile and sodium hypophosphite, the conversion of phosphorus increases by 7%, and an increase in the polymerization rate is observed compared to using water as a reaction medium at the initial stage. The composition and structure of phosphorus-containing polymers obtained during electron beam polymerization were characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF).
Keywords
фосфор фосфорсодержащие полимеры ускоренные электроны химия высоких энергий MALDI-TOF
Date of publication
01.08.2025
Year of publication
2025
Number of purchasers
0
Views
37

References

  1. 1. Tian H., Wang J., Lai G., Dou Y., Gao J., Duan Z., Feng X., Wu Q., He X., Yao L., Zeng L., Liu Y., Yang X., Zhao J., Zhuang S., Shi J., Qu G., Yu X.-F., Chu P.K., Jiang G. // Chem. Soc. Rev. 2023. V. 52. № 16. P. 5388–5484. https://doi.org/10.1039/D2CS01018F
  2. 2. Han Z., Yang X., Yao H., Ran C., Guan C., Lu K., Yang C., Fu L. // Energy Technol. 2025. V. 13. № 1. 2401320. http://dx.doi.org/10.1002/entc.202401320
  3. 3. Zhou J., Ye W., Lian X., Shi Q., Liu Y., Yang X., Liu L., Wang D., Choi J.-H., Sun J., Yang R., Wang M.-S., Runmeil M.H. // Energy Storage Mater. 2022. V. 46. P. 20–28. https://doi.org/10.1016/j.ensm.2021.12.042
  4. 4. Sun Y., Wang L., Li Y., Li Y., Lee H.R., Pei A., He X., Cui Y. // Joule. 2019. V. 3. № 4. P. 1080–1093. https://doi.org/10.1016/j.joule.2019.01.017
  5. 5. Bai J., Li Z., Wang X., Swierczek K., Wu C., Zhao H. // Energy Mater. Adv. 2024. V. 5. 0086. https://doi.org/10.34133/energymatadv.0086
  6. 6. Strumolo M.J., Erenin D.B., Wang S., Mora Perez C., Prezhdo O.V., Figueroa J.S., Brutchev R.L. // Inorg. Chem. 2023. V. 62. № 16. P. 6197–6201. https://doi.org/10.1021/acs.inorgchem.3c00370
  7. 7. Smith J.B., Hagaman D., Ji H.-F. // Nanotechnology. 2016. V. 27. № 21. 215602. https://doi.org/10.1088/0957-4484/27/21/215602
  8. 8. Yilmaz O., Kalyon H.Y., Gencten M., Sahin Y. // J. Energy Storage. 2024. V. 79. 110133. https://doi.org/10.1016/j.est.2023.110133
  9. 9. Yuan H., Zhao Y., Wang Y., Duan J., He B., Tang Q. // J. Power Sources. 2019. V. 410–411. P. 53–58. https://doi.org/10.1016/j.jpowsour.2018.11.011
  10. 10. Fung C.-M., Er C.-C., Tan L.-L., Mohamed A.R., Chai S.-P. // Chem. Rev. 2022. V. 122. № 3. P. 3879–3965. https://doi.org/10.1021/acs.chemrev1c00068
  11. 11. He D., Dong J., Zhang Y.-N., Zhang S., Zhang Y.-N., Qu J. // Catalysts. 2025. V. 15. № 3. 218. https://doi.org/10.3390/catal15030218
  12. 12. Gibertini E., Carosio F., Aykanat K., Accogli A., Panzeri G., Magagnin L. // Surf. Interfaces. 2021. V. 25. 101252. https://doi.org/10.1016/j.surfin.2021.101252
  13. 13. Tarasova N., Zanin A., Sobolev P., Ivanov A. // Phosphorus Sulfur Silicon Relat. Elem. 2021. V. 197. № 5–6. P. 608–609. https://doi.org/10.1080/10426507.2021.2011885
  14. 14. Tarasova N.P., Balitskii V.Yu. // J. Appl. Chem. USSR. 1991. V. 64. № 6. P. 1035–1040.
  15. 15. Tarasova N.P., Smetannikov Yu.V., Vilesov A.S., Shevchenko V.P., Byakov V.M. // Dokl. Phys. Chem. 2008. V. 423. P. 335–338. https://doi.org/10.1134/S0012501608120051
  16. 16. Yang Z., Li W., Huang H., Ren S., Men Y., Li F., Yu X., Luo Q. // Talanta. 2022. V. 237. 122978. https://doi.org/10.1016/j.talanta.2021.122978
  17. 17. O'Rourke M.B., Smith C.C., De La Monte S.M., Sutherland G.T., Padula M.P. // Curr. Protoe. Mol. Biol. 2019. V. 126. № 1. e86. https://doi.org/10.1002/cppnb.86
  18. 18. Zhang W., Andersson J.T., Räder H.J., Müller K. // Carbon. 2015. V. 95. P. 672–680. https://doi.org/10.1016/j.carbon.2015.08.057
  19. 19. Tapacoga H.I., Janun A.A., Kapaaee C.E., Keenophonne H.A., Haanao A.E. // Успехи в химии и химической технологии. 2024. T. 38. № 1. С. 38–41.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library