- PII
- S303451125040062-1
- DOI
- 10.7868/S303451125040062
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 523 / Issue number 1
- Pages
- 50-60
- Abstract
- In this work, cryochemical approaches are used to obtain nanoparticles of magnetic iron oxides of various compositions and morphologies. Cryochemical coprecipitation of iron(II) and (III) salts with an ammonia solution in the temperature range from –30 to –50°C leads to the formation of single-domain superparamagnetic maghemite nanoparticles with an average size of 6 ± 2 nm, which is smaller than the average particle size (20 ± 2 nm) obtained by the classical coprecipitation method. However, cryochemical coprecipitation leads to the formation of goethite impurity. Single-domain superparamagnetic magnetite nanoparticles with an average diameter of 10 ± 2 nm without goethite impurity can be obtained by cryochemical precipitation of iron(II) sulfate with ammonia in air. Thermal decomposition of cryomodified iron salts allows obtaining maghemite nanoparticles of 40–300 nm in size in the case of iron(III) acetylacetonate and iron(III) formate, as well as micron-sized maghemite and goethite particles of complex shape in the case of iron(III) ammonium citrate and iron(II) gluconate.
- Keywords
- криохимический синтез однодоменные магнитные наночастицы маггемит магнетит соли железа криоосаждение
- Date of publication
- 01.08.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 28
References
- 1. Tiberio P., Barrera G., Celegato F., Coisson M., Chiolerio A., Martino P., Pandolfi P., Allia P. // Eur. Phys. J. 2013. V. 86. № 173. Р. 10–15. https://doi.org/10.1140/epjb/e2013-30983-8
- 2. Трахтенберг Л., Герасимов Г., Григорьев Е. // Журн. физ. химии. 1999. Т. 73. С. 264–276.
- 3. Belle C. J., Bonamini A., Simon U., Santoyo-Salazar J., Pauly M., Bégin-Colin S., Pourroy G. // Sens. Actuators, B. 2011. V. 160. № 1. Р. 942–950. https://doi.org/10.1016/j.snb.2011.09.008
- 4. Liu M., Ye Y., Ye J., Gao T., Wang D., Chen G., Song Z. // Magnetochemistry. 2023. V. 9. Р. 110. https://doi.org/10.3390/magnetochemistry9040110
- 5. Kumar P., Tomar V., Kumar D., Joshi R.K., Nemiwad M. // Tetrahedron. 2022. V. 106–107. Р. 132641.
- 6. Vernaya O.I., Krotova I.N., Maksimov Yu.V., Rostovsichikova T.N. // Petrochemistry. 2017. V. 57. Р. 96–102. https://doi.org/10.1134/S0965544116080181
- 7. Trakhtenberg L., Ikim M., Iteghusi O., Gromov V., Gerasimov G. // Chemosensors. 2023. V. 11. Р. 320. https://doi.org/10.3390/chemosensors11060320
- 8. Pigalskiy K.S., Vishnev A.A., Efimov N., Shabatin A., Trakhtenberg L. // Curr. Appl. Phys. 2022. V. 41. Р. 116–122. https://doi.org/10.1016/j.cap.2022.06.019
- 9. Pigalskiy K., Vishnev A., Efimov N.N., Shabatin A.V., Trakhtenberg L.I. // Ceram. Int. 2025 V. 51. Р. 11037–11047. https://doi.org/10.1016/j.ceramint.2024.12.523
- 10. Venkateswarlu S., Kumar B., Prathima B., SubbaRao Y., Jyothi N.V. // Arab. J. Chem. 2012. V. 4. Р. 588–596. http://dx.doi.org/10.1016/j.arabjc.2014.09.006
- 11. Kour S., Sharma R.K., Jasroita R., Singh V. // AIP Conf. Proc. 2019. V. 2142. Р. 090007. https://doi.org/10.1063/1.5122451
- 12. Yue H., Shin J.M., Tegdaw T., Han H., Chae K.-S., Chang Y., Lee G. // J. Nanopart. Res. 2020. V. 22. Р. 366. https://doi.org/10.1007/s11051-020-05101-4
- 13. Shabatina T.I., Vernaya O.I., Shabatin V.P., Melnikov M.Y. // Magnetochemistry. 2020. V. 6. Р. 30. https://doi.org/10.3390/magnetochemistry6030030
- 14. Martin L.M.A., Sheng J., Zimba P.V., Zhu L., Fadaee O.O., Haley C., Wang M., Phillips T.D., Conkle J., Xu W. // Nanomaterials. 2022. V. 12. Р. 2348. https://doi.org/10.3390/nano12142348
- 15. Shabatina T.I., Vernaya O.I., Shimanovsky N.L., Melnikov M.Ya. // Pharmaceutics. 2023. V. 15. Р. Р1181. https://doi.org/10.3390/pharmaceutics1504181
- 16. Al-Madhagi H., Yazbik V., Abdelwahed W., Alcha L. // BioNanoSci. 2023. V. 13. Р. 853–859. https://doi.org/10.1007/S12668-023-01113-1
- 17. Zambzickatie G., Talakis M., Doblias J., Stankevic V., Drabavicius A., Ntaura G., Mikolumaine L. // Materials. 2022. V. 15. Р. 4008. https://doi.org/10.3390/ma15114008
- 18. Horner O., Neveu S., de Montredon S., Siauque J.-M., Cabull V. // J. Nanopart. Res. 2009. V. 11. Р. 1247–125. https://doi.org/10.1007/s11051-008-9582-x
- 19. Yang X., Liu S., Liang T., Yan X., Zhang Y., Zhou Y., Sarkar B., Ok Y.S. // J. Hazard. Mater. 2022. V. 427. Р. 128117. https://doi.org/10.1016/j.jhazmat.2021.128117
- 20. Abduhwahid F., Haider A.J., Al-Musawi S. // AIP Conf. Proc. 2023. V. 2769. Р. 020039. https://doi.org/10.1063/5.0129824
- 21. Gareev K.G., Grouzdev D.S., Khariionskii P.V., Kostorov A., Koziceva V.V., Sergienko E.S., Shevtsov M.A. // Magnetochemistry. 2021. V. 7. Р. 86. https://doi.org/10.3390/magnetochemistry7060086
- 22. Rostovsichikova T., Smirnov V., Kiseleva O., Yusheenko V., Tradikov M., Maksimov Y., Suzdalev I., Kustov L., Tkatchenko O. // Catal. Today. 2010. V. 152. Р. 48–53. https://doi.org/10.1016/j.cattod.2009.10.017
- 23. Jones D.H., Srivastava K.K.P. // Phys. Rev. B. 1986. V. 34. Р. 7542–7548. https://doi.org/10.1103/PhysRevB.34.7542
- 24. Zharkynhaeva R., Dzeranov A., Pankratov D., Saman D., Bondarenko L., Terekhova V., Tropskaya N., Mameova A., Kyuralieva K. // Chem. Biol. Technol. Agric. 2024. V. 11. Р. 14. https://doi.org/10.1186/s40538-023-00530-4
- 25. Shoppert A., Valeev D., Diallo M.M., Loginova I., Beavogui M.C., Rakhmonov A., Ovchenkov Ye., Pankratov D. // Materials. 2022. V. 15. Р. 8423. https://doi.org/10.3390/ma15238423
- 26. Pankratov D.A., Dovlevarova E.A., Zhikharev A.P., Gusev A., Yáñez C., Neaman A. // Appl. Geochem. 2024. V. 166. Р. 105982. https://doi.org/10.1016/j.apgeochem.2024.105982
- 27. Chernovskoy P.A., Novakova A.A., Pankina G.V., Pankratov D.A., Panfilov S.I., Petrovskaya G.A. // Magnetochemistry. 2023. V. 9. Р. 228. https://doi.org/10.3390/magnetochemistry9110228
- 28. Dzeranov A., Bondarenko L., Pankratov D., Prokof'ev M., Dzhardinialieva G., Jorobekova S., Tropskaya N., Telegina L., Kyuralieva K. // Magnetochemistry. 2022. V. 9. Р. 3. https://doi.org/10.3390/magnetochemistry9010003
- 29. Dzeranov A., Bondarenko L., Pankratov D., Dzhardinialieva G., Jorobekova S., Saman D., Kyuralieva K. // Magnetochemistry. 2023. V. 9. Р. 18. https://doi.org/10.3390/magnetochemistry9010018
- 30. Brok E., Frandsen C., Madsen D.E., Jacobsen H., Birk J.O., Lefmann K., Benlix J., Pedersen K.S., Boothroyd C.B., Berhe A.A., Simeoni G.G., Marup S. // J. Phys. D.: Appl. Phys. 2014. V. 47. Р. 365003. https://doi.org/10.1088/0022-3727/47/36/365003
- 31. Martínez B., Roig A., Obradors X., Molins E., Rouanet A., Monty C. // J. Appl. Phys. 1996. V. 79. P. 2580–2586. http://dx.doi.org/10.1063/1.361125
- 32. Bondarenko L., Baumuratova R., Reindl M., Zach V., Dzeranov A., Pankratov D., Kydralieva K., Dzhardinadiev G., Kolb D., Wagner F.E., Schwanninger S.P. // Heliyon. 2024. V. 10 P. e27640. https://doi.org/10.1016/j.heliyon.2024.e27640
- 33. Klygach D.S., Yakhitov M.G., Pankratov D.A., Zherepisov D.A., Tolstoguzov D.S., Raddaoui Z., El Kossi S., Dhahri J., Vinnik D.A., Trukhanov A.V. // J. Magn. Magn. Mater. 2021. V. 526. P. 167694. http://dx.doi.org/10.1016/j.jmmm.2020.167694
- 34. Pankratov D.A., Anuchina M.M. // Mater. Chem. Phys. 2019. V. 231. P. 216–224. http://dx.doi.org/10.1016/j.matchemphys.2019.04.022
- 35. Pankratov D.A. // Inorg. Mater. 2014. V. 50. P. 82–89. http://dx.doi.org/10.1134/S0020168514010154
- 36. Bondarenko L.S., Pankratov D.A., Dzeranov A.A., Dzhardinadiev G., Sirelisova A.N., Zarrelli M., Kydralieva K.A. // Mendeleev Commun. 2022. V. 32. P. 642–644. http://dx.doi.org/10.1016/j.mencom.2022.09.025
- 37. Kicheeva A.G., Sushko E.S., Bondarenko L.S., Kydralieva K.A., Pankratov D.A., Tropskaya N.S., Dzeranov A.A., Dzhardinadiev G.I., Zarrelli M., Kudryasheva N.S. // Int. J. Mol. Sci. 2023. V. 24. P. 1133. http://dx.doi.org/10.3390/ijms24021133
- 38. Sawatzky G., Van Der Woude F., Morris A.H. // Phys. Rew. 1969. V. 183. P. 383–386. https://doi.org/10.1103/PhysRev.183.383
- 39. Goya G.F., Berquó T.S., Fonseca F.C., Morales M.P. // J. Appl. Phys. 2003. V. 94. P. 3520–3528. https://doi.org/10.1063/1.1599959
- 40. Martínez B., Roig A., Obradors X., Molins E., Rouanet A., Monty C. // J. Appl. Phys. 1996. V. 79. P. 2580–2586. https://doi.org/10.1063/1.361125