RAS PresidiumДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

THERMAL AND HETEROGENEOUS CATALYTIC CONVERSION OF HYDROLYSIS LIGNIN IN 1,4-DIOXANE

PII
10.31857/S2686953522600490-1
DOI
10.31857/S2686953522600490
Publication type
Status
Published
Authors
Volume/ Edition
Volume 509 / Issue number 1
Pages
76-82
Abstract
The transformation of hydrolytic lignin in 1,4-dioxane at a temperature of 250°C and a pressure of 13.0 MPa and the subsequent hydrogenation of thermal pyrolysis products on a Ru/C catalyst at a temperature of 250°C and a pressure of 10.0 MPa in an autoclave were studied. It has been established that the interaction of hydrolytic lignin with 1,4-dioxane and its catalytic hуdrogenation leads to the splitting of C−O and C−C bonds with the formation of a mixture of products: soluble phenol-derivative oligomers and monomers, products of their hydrogenolysis and hydrogenation, as well as a mixture of C1−C5 gas hydrocarbons and C2−C5 alcohols, ethers − formed mainly under reaction conditions during the destruction of the solvent − 1,4-dioxane.
Keywords
лигнин деполимеризация 1,4-диоксан Ru/C лигнолы алкилфенолы гидрогенолиз пиролиз 2D ЯМР гидрирование
Date of publication
18.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Боголицын К.Г., Лунин В.В., Косяков Д.С., Карма-нов А.П., Скребец Т.Э., Попова Н.Р., Малков А.В., Горбова Н.С., Пряхин А.Н., Шкаев А.Н., Иванчен-ко Н.Л. Физическая химия лигнина. М.: Академкнига, 2010. 492 с.
  2. 2. Benson T.J., Daggolu P.R., Hernandez R.A., Lui S., White M.G. // Adv. Catal. 2013. V. 56. P. 187– 353. https://doi.org/10.1016/B978-0-12-420173-6.00003-6
  3. 3. Lam E., Luong J.H.T. // ACS Catalysis. 2014. V. 4. № 10. P. 3393–3410. https://doi.org/10.1021/cs5008393
  4. 4. Sugiarto S., Leow Y., Tan C.L., Wang G., Kai D. // Bioactive Mater. 2022. V. 8. P. 71−94. https://doi.org/10.1016/j.bioactmat.2021.06.023
  5. 5. Sethupathy S., Morales G.M., Gao L., Wang H., Yang B., Jiang J., Sun J., Zhu D. // Bioresour. Technol. 2022. V. 347. 126696. https://doi.org/10.1016/j.biortech.2022.126696
  6. 6. Zhou N., Thilakarathna W.P.D.W., He Q.S., Rupasin-ghe H.P.V. // Front. Energy Res. 2022. V. 9. 758744. https://doi.org/10.3389/fenrg.2021.758744
  7. 7. Koklin A.E., Bobrova N.A., Bogdan T.V., Mishanin I.I., Bogdan V.I. // Molecules. 2022. V. 27. № 5. 1494. https://doi.org/10.3390/molecules27051494
  8. 8. Limarta S.O., Ha J.M., Park Y.K., Lee H., Suh D.J., Jae J. // J. Ind. Eng. Chem. 2018. V. 57. P. 45−54. https://doi.org/10.1016/j.jiec.2017.08.006
  9. 9. Yermakov Y.I., Surovikin V.F., Plaksin G.V., Semikole-nov V.A., Likholobov V.A., Chuvilin L.V., Bogdanov S.V. // React. Kinet. Catal. Lett. 1987. V. 33. P. 435–440. https://doi.org/10.1007/BF02128102
  10. 10. Kalenchuk A.N., Bogdan V.I., Dunaev S.F., Kustov L.M. // Int. J. Hydrogen Energy. 2018. V. 43. № 12. P. 6191–6196. https://doi.org/10.1016/j.ijhydene.2018.01.121
  11. 11. Толкачев Н.Н., Коклин А.Е., Лаптинская Т.В., Лунин В.В., Богдан В.И. // Изв. АН. Сер. хим. 2019. Т. 68. № 8. С. 1613–1620.
  12. 12. Ralph J., Lundquist K., Brunow G., Lu F., Kim H., Schatz P.F., Marita J.M., Hatfield R.D., Ralph S.A., Christensen J.H., Boerjan W. // Phytochem. Rev. 2004. V. 3. P. 29–60. https://doi.org/10.1023/B:PHYT.0000047809.65444.a4
  13. 13. Balakshin M., Capanema E., Gracz H., Chang H., Planta H.J. // Planta. 2011. V. 233. P. 1097–1110. https://doi.org/10.1007/s00425-011-1359-2
  14. 14. Боброва Н.А., Мишанин И.И., Коклин А.Е., Бог-дан В.И. // Сверхкритические Флюиды: Теория и Практика. 2021. Т. 16. № 3. С. 19–24. https://doi.org/10.34984/SCFTP.2021.16.3.002
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library