RAS PresidiumДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

PHASE FORMATION IN THE Mg3 – nNinBPO7 SYSTEM

PII
10.31857/S268695352260057X-1
DOI
10.31857/S268695352260057X
Publication type
Status
Published
Authors
Volume/ Edition
Volume 512 / Issue number 1
Pages
95-100
Abstract
Samples of Mg3 – nNinBPO7 (n = 0–3), synthesized by gel combustion followed by annealing at 980°C and cooled in the inertial-thermal mode, were studied by X‑ray powder diffraction, infrared spectroscopy, and X-ray fluorescence spectrometry. For the first time, the crystalline phase of Ni3BPO7 with the β-Zn3BPO7 structure has been experimentally obtained. When the composition of the samples changed from Mg3BPO7 to Ni3BPO7, a region of coexistence of α‑Mg3BPO7 and β-Ni3BPO7 phases was found. An analysis of the diffuse reflectance spectra of the Mg1.5Ni1.5BPO7 sample showed the presence of Ni2+ cations in an arrangement not symmetric octahedral or tetrahedral.
Keywords
многокомпонентные оксидные системы фазовые состояния
Date of publication
18.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Zhang J., Han B., Li P., Bian Y., Li J., Shi H. // J. Mater. Sci.—Mater. Electron. 2014. V. 25. № 8. P. 3498–3503. https://doi.org/10.1007/s10854-014-2045-5
  2. 2. Suzuki T., Hughes M., Ohishi Y. // J. Lumin. 2010. V. 130. № 1. P. 121–126. https://doi.org/10.1016/j.jlumin.2009.07.029
  3. 3. Смирнова М.Е., Копьева М.А., Никифорова Г.Е., Нипан Г.Д., Япрынцев А.Д., Петрова К.В., Коротко-ва Н.А. // Докл. РАН. Химия, науки о материалах. 2021. Т. 500. С. 44–49. https://doi.org/10.31857/S2686953521050186
  4. 4. Aziz S.M., Umar R., Yusoff N.B.M., Rosid S.J.M., Mohd S.N.S., Amin M. // Malaysian J. Fundam. Appl. Sci. 2020. V. 16. № 4. P. 524–529.
  5. 5. Gözel G., Baykal A., Kizilyalli M., Kniep R. // J. Eur. Ceram Soc. 1998. V. 18. № 14. P. 2241–2246. https://doi.org/10.1016/S0955-2219 (98)00152-6
  6. 6. Nord A.G., Stefanidis T. // Phys. Chem. Minerals. 1983. V. 10. P. 10–15. https://doi.org/10.1007/BF01204320
  7. 7. Liebertz J., Stähr S. // Z. Kristallogr. 1982. V. 160. P. 135–137. https://doi.org/10.1524/zkri.1982.160.14.135
  8. 8. Wang G., Wu Y., Fu P., Liang X., Xu Z., Chen C. // Chem. Mater. 2002. V. 14. № 5. P. 2044–2047. https://doi.org/10.1021/cm010617vCCC
  9. 9. Zhang E., Zhao S., Zhang J., Fu P., Yao J. // Acta Cryst. Section E: Struct. Rep. Online. 2011. V. 67. № 1. P. i3. https://doi.org/10.1107/S1600536810051871
  10. 10. Morkan A., Gul E., Morkan I., Kahveci G. // Int J. Appl. Ceram. Technol. 2018. V. 15. № 6. P. 1584–1593. https://doi.org/10.1111/ijac.13024
  11. 11. Manajan R., Prakash R. // Mater. Chem. Phys. 2020. V. 246. P. 122826 (1–10). https://doi.org/10.1016/j.matchemphys.2020.122826
  12. 12. Carrodeguas R.G., De Aza S. // Acta Biomater. 2011. V. 7. P. 3536–3546. https://doi.org/10.1016/j.actbio.2011.06.019
  13. 13. Kubelka P., Munk F. // Z. Technol. Phys. 1931. V. 12. P. 593–599.
  14. 14. Tena M.A., Mendoza R., García J.R., García-Granda S. // Results in Physics. 2017. V. 7. P. 1095–1105. https://doi.org/10.1016/j.rinp.2017.02.021
  15. 15. Sakurai T., Ishigame M., Arashi H. // J. Chem. Phys. 1969. V. 70. P. 3241–3245. https://doi.org/10.1063/1.1671546
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library