Президиум РАНДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

Кинетическая модель процесса этерификации лактата аммония н-бутиловым спиртом

Код статьи
10.31857/S2686953522600714-1
DOI
10.31857/S2686953522600714
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 511 / Номер выпуска 1
Страницы
88-94
Аннотация
Впервые исследована кинетика процесса получения бутиллактата при взаимодействии лактата аммония с н-бутанолом в присутствии воды в диапазоне температур 130–170°С в закрытой системе, как одной из стадий новой комплексной технологии получения молочной кислоты и полилактида. Впервые предложены схема протекания реакции и кинетическая модель процесса этерификации лактата аммония н-бутанолом, учитывающая побочное образование лактамида и кислотный катализ этерификации за счет молочной кислоты. Разработанная кинетическая модель может использоваться для математического моделирования реактора синтеза бутиллактата.
Ключевые слова
кинетика бутиллактат лактамид лактат аммония <i>н</i>‑бутанол молочная кислота этерификация
Дата публикации
18.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
2

Библиография

  1. 1. Сакович Г.В., Скиба Е.А., Будаева В.В., Гладышева Е.К., Алешина Л.А. // Докл. АН. 2017. Т. 477. № 1. С. 109–112. https://doi.org/10.1134/S1607672917060047
  2. 2. Федотов А.С., Антонов Д.О., Уваров В.И., Корчак В.Н., Цодиков М.В., Моисеев И.И. // Докл. АН. 2014. Т. 459. № 4. С. 437. https://doi.org/10.7868/S0869565214340131
  3. 3. Shvets V., Kozlovskiy R., Kuznetsov A. // J. Clean. Prod. 2017. V. 155 P. 157–163. https://doi.org/10.1016/j.jclepro.2016.08.092
  4. 4. Meshalkin V.P., Dovì’ V.G., Bobkov V.I., Belyakov A.V., Butusov O.B., Garabadzhiu A.V., Burukhina T.F., Khodchenko S.M. // Mendeleev Commun. 2021. V. 31. № 5. P. 593–604. https://doi.org/10.1016/j.mencom.2021.09.003
  5. 5. Kumar R., Mahajani S.M. // Ind. Eng. Chem. Res. 2007. V. 46. № 21. P. 6873–6882. https://doi.org/10.1021/ie061274j
  6. 6. Garlotta D. // J. Polym. Environ. 2001. 9. № 2. P. 63–84. https://doi.org/10.1023/A:1020200822435
  7. 7. Vaidya A.N., Pandey R.A., Mudliar S., Suresh Kumar M., Chakrabarti T., Devotta S. // Crit. Rev. Environ. Sci. Technol. 2005. V. 35. № 5. P. 429–467. https://doi.org/10.1080/10643380590966181
  8. 8. Jamshidian M., Tehrany E.A., Imran M., Jacquot M., Desobry S. // Compr. Rev. Food Sci. Food Saf. 2010. V. 9. № 5. P. 552–571. https://doi.org/10.1111/j.1541-4337.2010.00126.x
  9. 9. Pang X., Zhuang X., Tang Z., Chen X. // Biotechnol. J. 2010. V. 5. № 11. P. 1125–1136. https://doi.org/10.1002/biot.201000135
  10. 10. Кузнецов А.Е., Козловский Р.А., Белодед А.В., Козловский И.А., Козловский М.Р., Кучеренко В.В., Насиров И.Р. // Химическая промышленность сегодня. 2022. № 3. С. 2–13. https://doi.org/10.53884/27132854_2022_3_2
  11. 11. Sin L.T., Rahmat A.R., Rahman W.A.W.A. Preface. In: Polylactic Acid. William Andrew Publishing, 2013. P. xi–xii. https://doi.org/10.1016/B978-1-4377-4459-0.00013-5
  12. 12. Wee Y.J., Kim J.N., Ryu H.W. // Food Technol. Biotechnol. 2006. V. 44. № 2. P. 163–172. https://hrcak.srce.hr/109834
  13. 13. Reddy C.A., Henderson H.E., Erdman M.D. // Appl. Environ. Microbiol. 1976. V. 32. № 6. P. 769–776. https://doi.org/10.1128/aem.32.6.769-776.1976
  14. 14. Bai D.M., Yan Zh.H., Wei Q., Zhao X.M., Li X.G., Xu Sh.M. // Biochem. Eng. J. 2004. V. 19. № 1. P. 47–51. https://doi.org/10.1016/j.bej.2003.10.002
  15. 15. Venus J. // Biotechnol. J. 2006. V. 1. № 12. P. 1428–1432. https://doi.org/10.1002/biot.200600180
  16. 16. Hetényi K., Németh Á., Sevella B. // Chem. Eng. Process. 2011. V. 50. № 3. P. 293–299. https://doi.org/10.1016/j.cep.2011.01.008
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека