- PII
- 10.31857/S268695352260074X-1
- DOI
- 10.31857/S268695352260074X
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 508 / Issue number 1
- Pages
- 26-34
- Abstract
- The paper presents a comparative study of the characteristics of lithium iron phosphate positive electrodes with various types of commercially available carbon nanotubes – single-walled (SWCNT), double-walled (DWCNT) and multi-walled (MWCNT). Electrochemical characteristics of the cathode materials were investigated using electrochemical impedance spectroscopy and galvanostatic charge/discharge measurements. Cyclic stability at various current densities was estimated. The best electrochemical characteristics are exhibited by cathode materials with SWCNT (advantage over DWCNT at discharge rates higher than 10C) and DWCNT (advantage over SWCNT during prolonged cycling). During cycling at a current density of 1C, the greatest loss of capacity was demonstrated by the MWCNT-based electrode. At the same time, the electrodes with SWCNT and DWCNT demonstrated satisfactory capacity retention after 50 charge/discharge cycles: over 94 and over 98%, respectively.
- Keywords
- литий-ионный аккумулятор проводящая добавка углеродные нанотрубки электропроводность
- Date of publication
- 18.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 6
References
- 1. Natarajan S., Aravindan V. // ACS Energy Lett. 2018. V. 3. № 9. P. 2101–2103. https://doi.org/10.1021/acsenergylett.8b01233
- 2. Heidari E.K., Kamyabi-Gol A., Sohi M.H., Ataie A. // J. Ultrafine Grained Nanostruct. Mater. 2018. V. 51. № 1. P. 1–12. https://doi.org/10.22059/JUFGNSM.2018.01.01
- 3. Satyavani T.V.S.L, Ramya Kiran B., Rajesh Kumar V., Srinivas Kumar A., Naidu S.V. // Eng. Sci. Technol., Int. J. 2016. V. 19. № 1. P. 40–44. https://doi.org/10.1016/j.jestch.2015.05.011
- 4. Shih J., Lin G., James Li Y., Tai-Feng Hung, Rajan J., Karuppiah C., Chun-Chen Y. // Electrochim. Acta. 2022. V. 419. 140356. https://doi.org/10.1016/j.electacta.2022.140356
- 5. Rajoba S.J., Jadhav L.D., Patil P.S., Tyagi D.K., Varma S., Wani B.N. // J. Electron. Mater. 2017. V. 46. P. 1683–1691. https://doi.org/10.1007/s11664-016-5212-z
- 6. Zhou X., Wang F., Zhu Y., Liu Z. // J. Mater. Chem. 2011. V. 21. P. 3353–3358. https://doi.org/10.1039/C0JM03287E
- 7. Liu T., Sun S., Zhao Z., Li X., Sun X., Cao F., Wu J. // RSC Adv. 2017. V. 7. P. 20882–20887. https://doi.org/10.1039/C7RA02155K
- 8. Qi X., Blizanac B., DuPasquier A., Miodrag Ol., Li J., Winter M. // Carbon. 2013. V. 64. P. 334–340. https://doi.org/10.1016/j.carbon.2013.07.083
- 9. Ji X., Mu Y., Liang J., Jiang T., Zeng J., Lin Z., Lin Y., Yu J. // Carbon. 2021. V. 176. P. 21–30. https://doi.org/10.1016/j.carbon.2021.01.128
- 10. Juarez-Yescas C., Ramos-Sánchez G., González I. // J. Solid State Electrochem. 2018. V. 22. P. 3225–3233. https://doi.org/10.1007/s10008-018-4021-0
- 11. Chen Y., Zhang H., Chen Y., Qin G., Lei X., Liu L. // Mater. Sci. Forum. 2018. V. 913. P. 818–830. https://doi.org/10.4028/www.scientific.net/msf.913.818
- 12. Fiyadh S.S., AlSaadi M.A., Jaafar W.Z., AlOmar M.Kh., Fayaed S.S., Mohd N.S., Hin L.S., El-Shafie A. // J. Cleaner Prod. 2019. V. 230. P. 783–793. https://doi.org/10.1016/j.jclepro.2019.05.154
- 13. Zhang R., Zhang Y., Zhang Q., Xie H., Qian W., Wei F. // ACS Nano. 2013.V. 7. № 7. P. 6156–6161. https://doi.org/10.1021/nn401995z
- 14. Garg A., Chalak H.D., Belarbi M-O., Zenkour A.M., Sahoo R. // Compos. Struct. 2021. V. 272 P. 114234. https://doi.org/10.1016/j.compstruct.2021.114234
- 15. Zhang S., Hao A., Nguyen N., Oluwalowo A., Liu Z., Dessureault Y., Gyu J.P., Liang R. // Carbon. 2019. V. 144. P. 628–638. https://doi.org/10.1016/j.carbon.2018.12.091
- 16. Li J., Ma P., Chow W., To C., Tang B. Kim J.-K. // Adv. Funct. Mater. 2007. V. 17. P. 3207–3215. https://doi.org/10.1002/adfm.200700065
- 17. Wang K., Wu Y., Luo S., He X., Wang J., Jiang K., Fan S. // J. Power Sources. 2013. V. 233. P. 209–215. https://doi.org/10.1016/j.jpowsour.2013.01.102
- 18. Belharouak I., Johnson C., Amine K. // Electrochem. Commun. 2005. V. 7. № 10. P. 983–988. https://doi.org/10.1016/j.elecom.2005.06.019
- 19. Filimonenkov I.S., Urvanov S.A., Zhukova E.A., Karae-va A.R., Skryleva E.A., Mordkovich V.Z., Tsirlina G.A. // J. Electroanal. Chem. 2018. V. 827. P. 58–63. https://doi.org/10.1016/j.jelechem.2018.09.004
- 20. Filimonenkov I.S., Urvanov S.A., Kazennov N.V., Tarelkin S.A., Tsirlina G.A., Mordkovich V.Z. // J. Appl. Electrochem. 2022. V. 52. P. 487–498. https://doi.org/10.1007/s10800-021-01652-z
- 21. Meddings N., Heinrich M., Overney F., Lee J.S., Ruiz V., Napolitano E., Seitz S., Hinds G., Raccichini R., Gaberšček M., Park J. // J. Power Sources. 2020. V. 480. P. 228742. https://doi.org/10.1016/j.jpowsour.2020.228742
- 22. Zhao N., Zhi X., Wang L., Liu Y., Liang G. // J. Alloys Compd. 2015. V. 645. P. 301–308. https://doi.org/10.1016/j.jallcom.2015.05.097
- 23. Jin B., Gu H.B., Zhang W., Park K.H., Sun G. // J. Solid State Electrochem. 2008. V. 12. P. 1549–1554. https://doi.org/10.1007/s10008-008-0509-3
- 24. Wei X., Guan Y., Zheng X., Zhu Q., Shen J., Qiao N., Zhou S., Xu B. // Appl. Surf. Sci. 2018, V. 440. P. 748–754. https://doi.org/10.1016/j.apsusc.2018.01.201
- 25. Tian R., Alcala N., O’Neill S.J., Horvath D.V., Coelho J., Griffin A.J., Zhang Y., Nicolosi V., O`Dwyer C., Cole-man J.N. // ACS Appl. Energy Mater. 2020. V. 3. № 3. P. 2966–2974. https://doi.org/10.1021/acsaem.0c00034
- 26. Dreyer W., Jamnik J., Guhlke C., Huth R., Moskon J., Gaberscer M. // Nat. Mater. 2010. V. 9. P. 448–453. https://doi.org/10.1038/nmat2730
- 27. Fu Y., Wei Q., Zhang G., Zhong Y., Moghimian N., Tong X., Sun S. // Materials. 2019. V. 12. P. 842. https://doi.org/10.3390/ma12060842
- 28. Zeng H., Ji X., Tsai F., Zhang Q., Jiang T., Li R. K.Y., Shi H., Luan S., Shi D. // Solid State Ionics. 2018. V. 320. P. 92–99. https://doi.org/10.1016/j.ssi.2018.02.040
- 29. Li J., Ma P., Chow W., To C., Tang B., Kim J.-K. // Adv. Funct. Mater. 2007. V.17. P. 3207–3215. https://doi.org/10.1002/adfm.200700065
- 30. Liu X-M., Huang D.Z., Oh S.-W., Zhang B., Ma P.-C., Yuen M.M.F., Kim J.‑K. // Compos. Sci. Technol. 2012. V. 72. № 2. P. 121–144. https://doi.org/10.1016/j.compscitech.2011.11.019
- 31. Napolskiy F., Avdeev M., Yerdauletov M., Ivankov O., Bocharova S., Ryzhenkova S., Kaparova B., Mirono-vich K., Burlyaev D., Krivchenko V. // Energy Technol. 2020. V. 8. № 6. P. 2000146. https://doi.org/10.1002/ente.202000146
- 32. Yoo J.-K., Oh Y., Park T., Lee K.E., Um M.-K., Yi J.-W. // Energy Technol. 2019. V. 7. № 5. 1800845. https://doi.org/10.1002/ente.201800845