- PII
- 10.31857/S2686953523600277-1
- DOI
- 10.31857/S2686953523600277
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 513 / Issue number 1
- Pages
- 54-61
- Abstract
- A previously undescribed phenyl-substituted iodo-δ-lactone of 11‑phenylundeca-5Z,9Z-dienoic acid was synthesized using the Ti-catalyzed intermolecular cross-cyclomagnesiation of an aromatic 1,2-diene with an O‑containing allene at the key stage in a 94% yield. The in vitro cytotoxic activity of the obtained alkyl- and phenyl-substituted iodo-δ-lactones 5Z,9Z-dienoic acids was studied in relation to the cell lines Jurkat, K562, U937, HL60, Hek293, and the effect on the cell cycle and the ability to induce apoptosis with using flow cytometry.
- Keywords
- <i>кросс</i>-цикломагнирование 1,2-диены йод-δ-лактоны Cp<sub>2</sub>TiCl<sub>2</sub> цитотоксическая активность аппотоз Jurkat K562 U937 HL60 HEK293
- Date of publication
- 18.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 3
References
- 1. Wang L., Zhou X., Fredimoses M., Liao S., Liu Y. // RSC Adv. 2014. V. 4. № 101. P. 57350–57376. https://doi.org/10.1039/c4ra09833a
- 2. Dembitsky V.M. // Nat. Prod. Commun. 2006. V. 1. № 2. P. 139–175. https://doi.org/10.1177/1934578x0600100210
- 3. Kyeremeh K., Acquah K.S., Appiah-Opong R., Deng M., Jaspars H. // J. Chem. Applications. 2014. V. 1. № 1. P. 1–4.
- 4. Aiello A., Fattorusso E., Imperatore C., Menna M., Müller W. // Mar. Drugs. 2010. V. 8. № 2. P. 285–291. https://doi.org/10.3390/md8020285
- 5. Andavan G.S.B., Lemmens-Gruber R. // Mar. Drugs. 2010. V. 8. № 3. P. 810–834. https://doi.org/10.3390/md8030810
- 6. Hiroyuki I., Hiroki S., Hideo,K., Kiyoyuki Y. // Tetrahedron. 1994. V. 50. № 45. P. 12853–12882. https://doi.org/10.1016/s0040-4020 (01)81206-0
- 7. Shen Y.-C., Cheng Y.-B., Lin Y.-C., Guh J.-H., Teng C.-M., Ko C.-L. // J. Nat. Prod. 2004. V. 67. № 4. P. 542–546. https://doi.org/10.1021/np030435a
- 8. Williams P.G., Yoshida W.Y., Moore R.E., Paul V.J. // Org. Lett. 2003. V. 5. P. 4167–4170. https://doi.org/10.1021/ol035620u
- 9. Kigoshi H., Kanematsu K., Yokota K., Uemura D. // Tetrahedron. 2000. V. 56. № 46. P. 9063–9070. https://doi.org/10.1016/s0040-4020 (00)00759-6
- 10. Hwang B.S., Lee K., Yang C., Jeong E.J., Rho J.-R. // J. Nat. Prod. 2013. V. 76. № 12. P. 2355–2359. https://doi.org/10.1021/np400793r
- 11. Maiese W.M., Lechevalier M.P., Lechevalier H.A., Korshalla J., Kuck N., Fantini A., Wildey M.J., Thomas J., Greenstein M. // J. Antibiot. 1989. V. 42. P. 558–563.
- 12. Zhao B., Konno S., Wu J.M., Oronsky A.L. // Cancer Lett. 1990. V. 50. № 2. P. 141–147. https://doi.org/10.1016/0304-3835 (90)90244-r
- 13. Nicolaou K.C., Hale C.R.H., Nilewski C. // Chem. Rec. 2012 V. 12. № 4. P. 407–441. https://doi.org/10.1002/tcr.201200005
- 14. Ricart A.D. // Clin. Cancer Res. 2011. V. 17. № 20. P. 6417–6427. https://doi.org/10.1158/1078-0432.ccr-11-0486
- 15. Gartner R., Rank P., Ander B. // Hormones. 2010. V. 9. № 1. P. 60–66.
- 16. Boeynaems J.M., Hubbard W.C. // J. Biol. Chem. 1980. V. 255. P. 9001–9004. https://doi.org/10.1016/S0021-9258 (19)70513-4
- 17. Thomasz L., Oglio R., Salvarredi L., Perona M., Rossich L., Copelli S., Pisarev M., Juvenal G. // Mol. Cell Endocrinol. 2018. V. 470. P. 115–126. https://doi.org/10.1016/j.mce.2017.10.004
- 18. Nava-Villalba M., Nucez-Anita R.E., Bontempo A., Aceves C. // Mol. Cancer. 2015. V. 14. P. 168. https://doi.org/10.1186/s12943-015-0436-8
- 19. Arroyo-Helguera O., Rojas E., Delgado G., Aceves C. // Endocr. Relat. Cancer. 2008. V. 15. P. 1003–1011. https://doi.org/10.1677/ERC-08-0125
- 20. Aceves C., Mendieta I., Anguiano B., Delgado-Gonza-lez E. // J. Mol. Sci. 2021. V. 22. P. 1228. https://doi.org/10.3390/ijms22031228
- 21. D’yakonov V.A., Makarov A.A., Dzhemileva L.U., Makarova E.Kh., Khusnutdinova E.K., Dzhemilev U.M. // Chem. Commun. 2013. V. 49. P. 8401–8403. https://doi.org/10.1039/C3CC44926B
- 22. D’yakonov V.A., Dzhemileva L.U., Makarov A.A., Mulyukova A.R., Baev D.S., Khusnutdinova E.K., Tolstikova T.G., Dzhemilev U.M. // Bioorg. Med. Chem. Lett. 2015. V. 25. № 11. P. 2405–2408. https://doi.org/10.1016/j.bmcl.2015.04.011
- 23. D’yakonov V.A., Dzhemileva L.U., Makarov A.A., Mu-lyukova A.R., Baev D.S., Khusnutdinova E.K., Tolstiko-va T.G., Dzhemilev U.M. // Curr. Cancer Drug Targets. 2015. V. 15. № 6. P. 504–510. https://doi.org/10.2174/1568009615666150506093155
- 24. D’yakonov V.A., Dzhemileva L.U., Makarov A.A., Mu-lyukova A.R., Baev D.S., Khusnutdinova E.K., Tolstiko-va T.G., Dzhemilev U.M. // Med. Chem. Res. 2016. V. 25. № 1. P. 30–39. https://doi.org/10.1007/s00044-015-1446-1
- 25. D’yakonov V.A., Makarov A.A., Dzhemileva L.U., Makarova E.Kh., Ramazanov I.R., Dzhemilev U.M. // Cancers. 2021. V. 13. № 8. P. 1808. https://doi.org/10.3390/cancers13081808
- 26. Maкarov A.A., Ishbulatov I.V., Makarova E.Kh., D’yakonov V.A., Dzhemilev U.M. // Russ. J. Org. Chem. 2022. V. 58. № 12. P. 1954–1958. https://doi.org/10.1134/S1070428022120259
- 27. Tyagi R., Shimpukade B., Blattermann S., Kostenisb E., Ulven T. // Med. Chem. Commun. 2012. V. 3. P. 195–198. https://doi.org/10.1039/C1MD00231G
- 28. Kuang J., Ma S. // J. Org. Chem. 2009. V. 74. P. 1763. https://doi.org/10.1021/jo802391x