- PII
- 10.31857/S2686953523700231-1
- DOI
- 10.31857/S2686953523700231
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 512 / Issue number 1
- Pages
- 101-106
- Abstract
- For the first time, an approach to designing the structure of Eu2+ containing silicate glass-ceramics materials has been experimentally implemented, which consists in the fact that rare earth activator is introduced into various crystals formed during glass crystallization. Transparent Eu-containing glass and glass ceramics based on the system BaO–ZrO2–SiO2–MgF2 were prepared by the traditional glass melting method at 1450°C. The crystal structure and properties of materials were characterized by XRD analysis and photoluminescence spectroscopy during different stages of glass crystallization. It is shown that the simultaneous incorporation of Eu into different silicate crystals (Ba2SiO4, BaMgSiO4, and BaSiO3) formed during the glass crystallization leads to the formation of a material with a wide luminescence band in the visible part of the spectrum. The study of photoluminescence and luminescence excitation spectra of the glass suggests the possibility of energy transfer from Eu2+ to Eu3+ ions. The structures of Eu2+ luminescent centers are similar in the glass and glass-ceramics that is related to some phase separation in the glass before crystallization. The study of luminescence properties of prepared materials showed that these materials can be promising for the application in LEDs techniques.
- Keywords
- ситалл силикаты бария люминесценция Eu<sup>2+</sup>
- Date of publication
- 18.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 3
References
- 1. Liu J., Wang Z., He K., Wei L., Zhang Z., Wei Z., Yu H., Zhang H., Wang J. // Opt. Express. 2014. V. 22. № 22. P. 26933–26938. https://doi.org/10.1364/OE.22.026933
- 2. Булыга Д.В., Евстропьев С.К. // Опт. и спектр. 2022. Т. 130. № 9. С. 1455–1463. https://doi.org/10.21883/OS.2022.09.53309.3617-22
- 3. Vu N.-N., Kaliaguine S., Do T.-O. // Adv. Funct. Mater. 2019. V. 29. P. 1901825. https://doi.org/10.1002/adfm.201901825
- 4. Hu T., Ning L., Gao Y., Qiao J., Song E., Chen Z., Zhou Y., Wang J., Molokeev M.S., Ke X., Xia Z., Zhang Q. // Light Sci. Appl. 2021. V. 10. P. 56. https://doi.org/10.1038/s41377-021-00498-6
- 5. Biswas K., Sontakke A.D., Sen R., Annapurna K. // J. Fluoresc. 2012. V. 22. P. 745–752. https://doi.org/10.1007/s10895-011-1010-4
- 6. Lin H., Hu T., Cheng Y., Chen M., Wang Y. // Laser Photon. Rev. 2018. V. 12. № 6. P. 1700344. https://doi.org/10.1002/lpor.201700344
- 7. Nakanishi T., Tanabe S. // J. Light Vis. Env. 2008. V. 32. № 2. P. 93–96. https://doi.org/10.2150/jlve.32.93
- 8. Evstropiev S.K., Shashkin A.V., Knyazyan N.B., Manu-kyan G.G., Bagramyan V.V., Timchuk A.V., Stolyaro-va V.L. // J. Non-Cryst. Solids. 2022. V. 580. P. 121386. https://doi.org/10.1016/j.jnoncrysol.2021.121386
- 9. Lima S.M., da Cunha Antrade L.H., Silva J.R., Bento A.C., Baesso M.L., Sampaio J.A., de Oliveira Nunes L.A., Guyot Y., Boulon G. // Opt. Express. 2012. V. 20. № 12. P. 12658–12665. https://doi.org/10.1364/OE.20.012658
- 10. Chen D., Xiang W., Liang X., Zhong J., Yu H., Ding M., Lu H., Ji Z. // J. Eur. Ceram. Soc. 2015. V. 35. № 3. P. 859–869. https://doi.org/10.1016/j.jeurceramsoc.2014.10.002
- 11. Yu H., Zi W., Lan S., Gan S., Zou H., Xu X., Hong G. // Luminescence. 2013. V. 28. № 5. P. 679–684. https://doi.org/10.1002/bio.2415
- 12. Qiao J., Xia Z. // J. Appl. Phys. 2021. V. 129. P. 200903. https://doi.org/10.1063/5.0050290
- 13. Zhao M., Zhang Q., Xia Z. // Acc. Mater. Res. 2020. V. 1. № 2. P. 137–145. https://doi.org/10.1021/accountsmr.0c00014
- 14. Shannon R.D. // Acta Cryst. 1976. V. A32. P. 751–767. https://doi.org/10.1107/S0567739476001551
- 15. Han J.K., Hannah M.E., Piquette A., Talbot J.B., Mishra K.C., McKittrick J. // J. Lumin. 2015. V. 161. P. 20–24. https://doi.org/10.1016/j/jlumin.2014.12.032
- 16. Xu J., Zhao Y., Chen J., Mao Z., Yang Y., Wang D. // Luminescence. 2017. V. 32. № 6. P. 957–963. https://doi.org/10.1002/bio.3277
- 17. Ling H., Hu T., Cheng Y., M. Chen, Wang Y. // Laser Photonics Rev. 2018. V. 12. № 6. P.1700344. https://doi.org/10.1002/lpor.201700344
- 18. Bispo Jr. A.G., Ceccato D.A., Lima S.A.M., Pires A.M. // RSC Adv. 2017. V. 7. P. 53752–53762. https://doi.org/10.1039/c7ra10494d
- 19. Chen J., Liu Y.-G., Liu H., Yang D., Ding H., Fang M., Huang Z. // RSC Adv. 2014. V. 4. P. 18234–18239. https://doi.org/10.1039/C4RA00452C
- 20. Kim D., Jeon K.-W., Jin J.S., Kang S.-G., Seo D.-K., Park J.-C. // RSC Adv. 2015. V. 5. P. 105339–105346. https://doi.org/10.1039/C5RA19712K
- 21. Ji W., Lee M.-H., Hao L., Xu X., Agathopoulos S., Zheng D., Fang C. // Inorg. Chem. 2015. V. 54. P. 1556–1562. https://doi.org/10.1021/ic502568s
- 22. Zhang Q., Wang Q., Wang X., Ding X., Wang Y. // New J. Chem. 2016. V. 40. P. 8549–8555. https://doi.org/10.1039/C6NJ01831A
- 23. Sao S.K., Brahme N., Bisen D.P., Tiwari G. // Luminescence. 2016. V. 31. № 7. P. 1364–1371. https://doi.org/10.1002/bio.3116
- 24. Craievich A.F., Zanotto E.E., James P.F. // Bull. Minéral. 1983. V. 106. № 1–2. P. 169–184.