- PII
- 10.31857/S2686953524030068-1
- DOI
- 10.31857/S2686953524030068
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 516 / Issue number 1
- Pages
- 45-51
- Abstract
- The relaxation transition from a glassy to a highly elastic state (α-transition) of a fluoropolyurethane coating deposited on the surface of VPS-48/778 glass fiber reinforced plastic was studied using the method of dynamic mechanical analysis. It is shown that the relaxation maximum of the dynamic loss modulus in the initial state is a superposition of α1-, α2-, α3-transitions, corresponding, respectively, to transitions from the glassy to highly elastic state of VE-69 enamel and EP-0215 epoxy primer. The transition temperature α1, which is the glass transition temperature of fluoropolyurethane VE-69, after 3 years of exposure decreases in proportion to the average annual air temperature of the region. The transition temperatures α2 and α3 after full-scale exposure due to post-curing increased by 13−15°C and acquired stable values α2 = 99 ± 1°C, α3 = 122.5 ± 0.5°C, regardless of the climatic conditions of the tests.
- Keywords
- динамический механический анализ релаксационные переходы фторполиуретановое покрытие эпоксидная грунтовка климатическое старение температура стеклования доотверждение пластификация
- Date of publication
- 18.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 2
References
- 1. Кузнецова В.А., Емельянов В.В., Марченко С.А., Коврижкина Н.А. // Труды ВИАМ. 2023. № 10(128). С. 119–131. https://doi.org/10.18577/2307-6046-2023-0-10-119-131
- 2. Rao P.S. Husain M.M. // Int. J. Eng. Technol. 2014. № 2. P. 37–42. http://dx.doi.org/10.14741/ijcet/spl.2.2014.08
- 3. Heinrick M., Crawford B., Milani A.S. // MOJ Poly Sci. 2017. V. 1. P. 18–24. https://doi.org/10.15406/mojps.2017.01.00004
- 4. Велигодский И.М., Коваль Т.В., Курносов А.О., Мараховский П.С. // Труды ВИАМ. 2022. № 11(117). С. 134–148. http://dx.doi.org/10.18577/2307-6046-2022-0-11-134-148
- 5. Zhang T., Zhang T., He Y., Wang Y., Bi Y. // Chinese J. Aeronaut. 2023. V. 36. P. 1–35. http://dx.doi.org/10.1016/j.cja.2022.12.003
- 6. Menard R.P., Menard N. Dynamic mechanical analysis. 3rd Edn. London, CRC Press, 2020. 280 p.
- 7. Skrovanik D.J., Schöff C.K. // Prog. Org. Coat. 1988. V. 16. P. 135–163. http://dx.doi.org/10.1016/0033-0655 (88)80011-6
- 8. Johnson B.W., McIntyre R. // Prog. Org. Coat. 1996. V. 27. P. 95–106. http://dx.doi.org/10.1016/0300-9440 (94)00525-7
- 9. Perrin F.X., Merlatti C., Aragon E., Margaillan A. // Prog. Org. Coat. 2009. V. 64. P. 466–473. http://dx.doi.org/10.1016 /j.porgcoat.2008.08.015
- 10. Osterhold M., Glöckner P. // Prog. Org. Coat. 2001. V. 41. P. 177–182. http://dx.doi.org/10.1016/S0300-9440 (01)00152-7
- 11. Старцев О.В., Махоньков А.Ю., Деев И.С., Никишин Е.Ф. // Вопросы материаловедения. 2013. № 4 (76). С. 69–76.
- 12. Куцевич К.Е., Дементьева Л.А., Лукина Н.Ф., Тюменева Т.Ю. // Авиационные материалы и технологии. 2017. № S. С. 379–387. http://dx.doi.org/10.18577/2071-9140-2017-0-S-379-387
- 13. Каблов Е.Н., Старцев В.О., Лаптев А.Б. Старение полимерных композиционных материалов. М.: ВИАМ, 2023. с. 536.
- 14. Семенова Л.В., Нефедов Н.И., Белова М.В., Лаптев А.Б. // Авиационные материалы и технологии. 2017. № 4 (49). С. 56−61. http://dx.doi.org/10.18577/2071-9140-2017-0-4-56-61
- 15. Коваль Т.В., Старцев О.В., Велигодский И.М., Двирная Е.В. Исследование климатического старения лакокрасочных материалов методом динамического механического анализа. В Сборнике докладов VIII Всероссийской научно-технической конференции “Климат-23: современные подходы к оценке воздействия внешних факторов на материалы и сложные технические системы”. Москва, 29 сентября 2023 г. С. 113−122.
- 16. Славин А.В., Старцев О.В. // Труды ВИАМ. 2018. № 9(69). С. 71–82. http://dx.doi.org/10.18577/2307-6046-2018-0-9-71-82