- Код статьи
- 10.31857/S2686953524040029-1
- DOI
- 10.31857/S2686953524040029
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 517 / Номер выпуска 1
- Страницы
- 13-23
- Аннотация
- Изучено влияние ароматического триазольного кольца, сопряженного с фурановым гетероциклом, на стабильность фурана в различных реакционных условиях, показано значительное сокращение степени деградации электроноизбыточного фуранового ядра и гидролиза сложноэфирной группы под действием модельной кислоты и основания в различных органических растворителях. Наименьшая степень деградации и гидролиза триазол-замещенного эфира пирослизевой кислоты была достигнута в диоксане и полярных апротонных растворителях (ДМСО и ДМФА). Показано, что в тех же условиях происходит значительное осмоление и гидролиз фуранового эфира, не содержащего сопряженный триазольный фрагмент.
- Ключевые слова
- клик-реакция конверсия биомассы соединение-платформа триазол устойчивое развитие фуран фурфурол
- Дата публикации
- 18.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 2
Библиография
- 1. Halkos G.E., Gkampoura E.-C. // Energies. 2020. V. 13. № 11. P. 2906. https://doi.org/10.3390/en13112906
- 2. Seitkalieva M.M., Vavina A.V., Strukova E.N. // Dokl. Chem. 2023. V. 513. № 2. P. 380–388. https://doi.org/10.1134/s0012500823600967
- 3. Redina E.A., Vikanova K.V., Tkachenko O.P., Kapustin G.I., Kustov L.M. // Dokl. Chem. 2022. V. 507. № 2. P. 261–269. https://doi.org/10.1134/s0012500822600158
- 4. Zlotin S.G., Egorova K.S., Ananikov V.P., Akulov A.A., Varaksin M.V., Chupakhin O.N., Charushin V.N., Bryliakov K.P., Averin A.D., Beletskaya I.P., Dolengovski E.L., Budnikova Y.H., Sinyashin O.G., Gafurov Z.N., Kantyukov A.O., Yakhvarov D.G., Aksenov A.V., Elinson M.N., Nenajdenko V.G., Chibiryaev A.M., Nesterov N.S., Kozlova E.A., Martyanov O.N., Balova I.A., Sorokoumov V.N., Guk D.A., Beloglazkina E.K., Lemenovskii D.A., Chukicheva I.Y., Frolova L.L., Izmest’ev E.S., Dvornikova I.A., Popov A.V., Kutchin A.V., Borisova D.M., Kalinina A.A., Muzafarov A.M., Kuchurov I.V., Maximov A.L., Zolotukhina A.V. // Russ. Chem. Rev. 2023. V. 92. № 12. RCR5104. https://doi.org/10.59761/rcr5104
- 5. Bozell J.J., Petersen G.R. // Green Chem. 2010. V. 12. № 4. P. 539–554. https://doi.org/10.1039/b922014c
- 6. Bielski R., Grynkiewicz G. // Green Chem. 2021. V. 23. № 19. P. 7458–7487. https://doi.org/10.1039/d1gc02402g
- 7. Espro C., Paone E., Mauriello F., Gotti R., Uliassi E., Bolognesi M.L., Rodríguez-Padrón D., Luque R. // Chem. Soc. Rev. 2021. V. 50. № 20. P. 11191–11207. https://doi.org/10.1039/d1cs00524c
- 8. Gandini A., Lacerda T.M. // Macromol. Mater. Eng. 2022. V. 307. № 6. P. 2100902. https://doi.org/10.1002/mame.202100902
- 9. Karlinskii B.Ya., Ananikov V.P. // Chem. Soc. Rev. 2023. V. 52. № 2. P. 836–862. https://doi.org/10.1039/d2cs00773h
- 10. Jaswal A., Singh P.P., Mondal T. // Green Chem. 2022. V. 24. № 2. P. 510–551. https://doi.org/10.1039/d1gc03278j
- 11. Najmidin K., Kerim A., Abdirishit P., Kalam H., Tawar T. // J. Mol. Model. 2013. V. 19. № 9. P. 3529–3535. https://doi.org/10.1007/s00894-013-1877-x
- 12. Kucherov F.A., Romashov L.V., Galkin K.I., Ananikov V.P. // ACS Sustainable Chem. Eng. 2018. V. 6. № 7. P. 8064–8092. https://doi.org/10.1021/acssuschemeng.8b00971
- 13. Rani M.A.A.B.A., Karim N.A., Kamarudin S.K. // Int. J. Energy Res. 2022. V. 46. № 13. P. 18996–19050. https://doi.org/10.1002/er.8545
- 14. Averochkin G.M., Gordeev E.G., Skorobogatko M.K., Kucherov F.A., Ananikov V.P. // ChemSusChem 2021. V. 14. № 15. P. 3110–3123. https://doi.org/10.1002/cssc.202100818
- 15. Shepelenko K.E., Nikolaeva K.A., Gnatiuk I.G., Garanzha O.G., Alexandrov A.A., Minyaev M.E., Chernyshev V.M. // Mendeleev Commun. 2022. V. 32. № 4. P. 485–487. https://doi.org/10.1016/j.mencom.2022.07.018
- 16. Shepelenko K.E., Soliev S.B., Nikolaeva K.A., Minyaev M.E., Chernyshev V.M. // Russ. Chem. Bull. 2023. V. 72. № 8. P. 1746–1752. https://doi.org/10.1007/s11172-023-3956-1
- 17. John I.G., Radom L. // J. Am. Chem. Soc. 1978. V. 100. № 13. P. 3981–3991. https://doi.org/10.1021/ja00481a001
- 18. Cao H., Rupar P.A. // Chem. Eur. J. 2017. V. 23. № 59. P. 14670–14675. https://doi.org/10.1002/chem.201703355
- 19. Karlinskii B.Ya., Romashov L.V., Galkin K.I., Kislitsyn P.G., Ananikov V.P. // Synthesis. 2019. V. 51. № 05. P. 1235–1242. https://doi.org/10.1055/s-0037-1610414
- 20. Savelyeva N.Yu., Shpirt A.M., Orlova A.V., Chizhov A.O., Kononov L.O. // Russ. Chem. Bull. 2022. V. 71. № 8. P. 1784–1793. https://doi.org/10.1007/s11172-022-3590-3
- 21. Johansson G., Sundquist S., Nordvall G., Nilsson B.M., Brisander M., Nilvebrant L., Hacksell U. // J. Med. Chem. 1997. V. 40. № 23. P. 3804–3819. https://doi.org/10.1021/jm970346t
- 22. Hashmi A., Enns E., Frost T., Schäfer S., Frey W., Rominger F. // Synthesis. 2008. V. 2008. № 20. P. 3360–3360. https://doi.org/10.1055/s-0028-1083144
- 23. Cui X., Xu X., Wojtas L., Kim M.M., Zhang X.P. // J. Am. Chem. Soc. 2012. V. 134. № 49. P. 19981–19984. https://doi.org/10.1021/ja309446n
- 24. Fakhrutdinov A.N., Karlinskii B.Ya., Minyaev M.E., Ananikov V.P. // J. Org. Chem. 2021. V. 86. № 17. P. 11456–11463. https://doi.org/10.1021/acs.joc.1c00943
- 25. Stini N.A., Gkizis P.L., Kokotos C.G. // Green Chem. 2022. V. 24. № 17. P. 6435–6449. https://doi.org/10.1039/d2gc02332f
- 26. Warlin N., Garcia Gonzalez M.N., Mankar S., Valsange N.G., Sayed M., Pyo S.-H., Rehnberg N., Lundmark S., Hatti-Kaul R., Jannasch P., Zhang B. // Green Chem. 2019. V. 21. № 24. P. 6667–6684. https://doi.org/10.1039/c9gc03055g
- 27. Hoang T.M.C., van Eck E.R.H., Bula W.P., Gardeniers J.G.E., Lefferts L., Seshan K. // Green Chem. 2015. V. 17. № 2. P. 959–972. https://doi.org/10.1039/c4gc01324g
- 28. Tsilomelekis G., Orella M.J., Lin Z., Cheng Z., Zheng W., Nikolakis V., Vlachos D.G. // Green Chem. 2016. V. 18. № 7. P. 1983–1993. https://doi.org/10.1039/c5gc01938a
- 29. Shen H., Shan H., Liu L. // ChemSusChem. 2020. V. 13. № 3. P. 513–519. https://doi.org/10.1002/cssc.201902799
- 30. Hu X., Kadarwati S., Wang S., Song Y., Hasan M.D.M., Li C.-Z. // Fuel Process. Technol. 2015. V. 137. P. 212–219. https://doi.org/10.1016/j.fuproc.2015.04.024
- 31. Motornov V., Pohl R., Klepetářová B., Beier P. // Chem. Commun. 2023. V. 59. № 61. P. 9364–9367. https://doi.org/10.1039/d3cc00987d
- 32. Bauerová I., Ludwig M. // Collect. Czech. Chem. Commun. 2000. V. 65. № 11. P. 1777–1790. https://doi.org/10.1135/cccc20001777
- 33. Nummert V., Piirsalu M., Mäemets V., Koppel I. // Collect. Czech. Chem. Commun. 2006. V. 71. № 1. P. 107–128. https://doi.org/10.1135/cccc20060107
- 34. Mangione M.I., Spanevello R.A., Anzardi M.B. // RSC Adv. 2017. V. 7. № 75. P. 47681–47688. https://doi.org/10.1039/c7ra09558a
- 35. Kozlov K.S., Romashov L.V., Ananikov V.P. // Green Chem. 2019. V. 21. № 12. P. 3464–3468. https://doi.org/10.1039/c9gc00840c
- 36. Guan Y., Buivydas T., Lalisse R.F., Ali R., Hadad C.M., Mattson A.E. // Synthesis. 2022. V. 54. № 19. P. 4210–4219. https://doi.org/10.1055/a-1811-8075