- PII
- 10.31857/S2686953524040029-1
- DOI
- 10.31857/S2686953524040029
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 517 / Issue number 1
- Pages
- 13-23
- Abstract
- The effect of an aromatic triazole ring conjugated with a furan heterocycle on the stability of furan under various reaction conditions was studied, and a significant reduction in the degree of degradation of the electron-rich furan core and hydrolysis of the ester group under the action of a model acid and base in various organic solvents was shown. The lowest degree of degradation and hydrolysis of the triazole-substituted 2-furoic acid ester was achieved in dioxane, as well as in polar aprotic solvents (DMSO and DMF). It was shown that under the same conditions, a significant tarring and hydrolysis of the furan ester, which does not contain a conjugated triazole fragment, occurs.
- Keywords
- клик-реакция конверсия биомассы соединение-платформа триазол устойчивое развитие фуран фурфурол
- Date of publication
- 18.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 5
References
- 1. Halkos G.E., Gkampoura E.-C. // Energies. 2020. V. 13. № 11. P. 2906. https://doi.org/10.3390/en13112906
- 2. Seitkalieva M.M., Vavina A.V., Strukova E.N. // Dokl. Chem. 2023. V. 513. № 2. P. 380–388. https://doi.org/10.1134/s0012500823600967
- 3. Redina E.A., Vikanova K.V., Tkachenko O.P., Kapustin G.I., Kustov L.M. // Dokl. Chem. 2022. V. 507. № 2. P. 261–269. https://doi.org/10.1134/s0012500822600158
- 4. Zlotin S.G., Egorova K.S., Ananikov V.P., Akulov A.A., Varaksin M.V., Chupakhin O.N., Charushin V.N., Bryliakov K.P., Averin A.D., Beletskaya I.P., Dolengovski E.L., Budnikova Y.H., Sinyashin O.G., Gafurov Z.N., Kantyukov A.O., Yakhvarov D.G., Aksenov A.V., Elinson M.N., Nenajdenko V.G., Chibiryaev A.M., Nesterov N.S., Kozlova E.A., Martyanov O.N., Balova I.A., Sorokoumov V.N., Guk D.A., Beloglazkina E.K., Lemenovskii D.A., Chukicheva I.Y., Frolova L.L., Izmest’ev E.S., Dvornikova I.A., Popov A.V., Kutchin A.V., Borisova D.M., Kalinina A.A., Muzafarov A.M., Kuchurov I.V., Maximov A.L., Zolotukhina A.V. // Russ. Chem. Rev. 2023. V. 92. № 12. RCR5104. https://doi.org/10.59761/rcr5104
- 5. Bozell J.J., Petersen G.R. // Green Chem. 2010. V. 12. № 4. P. 539–554. https://doi.org/10.1039/b922014c
- 6. Bielski R., Grynkiewicz G. // Green Chem. 2021. V. 23. № 19. P. 7458–7487. https://doi.org/10.1039/d1gc02402g
- 7. Espro C., Paone E., Mauriello F., Gotti R., Uliassi E., Bolognesi M.L., Rodríguez-Padrón D., Luque R. // Chem. Soc. Rev. 2021. V. 50. № 20. P. 11191–11207. https://doi.org/10.1039/d1cs00524c
- 8. Gandini A., Lacerda T.M. // Macromol. Mater. Eng. 2022. V. 307. № 6. P. 2100902. https://doi.org/10.1002/mame.202100902
- 9. Karlinskii B.Ya., Ananikov V.P. // Chem. Soc. Rev. 2023. V. 52. № 2. P. 836–862. https://doi.org/10.1039/d2cs00773h
- 10. Jaswal A., Singh P.P., Mondal T. // Green Chem. 2022. V. 24. № 2. P. 510–551. https://doi.org/10.1039/d1gc03278j
- 11. Najmidin K., Kerim A., Abdirishit P., Kalam H., Tawar T. // J. Mol. Model. 2013. V. 19. № 9. P. 3529–3535. https://doi.org/10.1007/s00894-013-1877-x
- 12. Kucherov F.A., Romashov L.V., Galkin K.I., Ananikov V.P. // ACS Sustainable Chem. Eng. 2018. V. 6. № 7. P. 8064–8092. https://doi.org/10.1021/acssuschemeng.8b00971
- 13. Rani M.A.A.B.A., Karim N.A., Kamarudin S.K. // Int. J. Energy Res. 2022. V. 46. № 13. P. 18996–19050. https://doi.org/10.1002/er.8545
- 14. Averochkin G.M., Gordeev E.G., Skorobogatko M.K., Kucherov F.A., Ananikov V.P. // ChemSusChem 2021. V. 14. № 15. P. 3110–3123. https://doi.org/10.1002/cssc.202100818
- 15. Shepelenko K.E., Nikolaeva K.A., Gnatiuk I.G., Garanzha O.G., Alexandrov A.A., Minyaev M.E., Chernyshev V.M. // Mendeleev Commun. 2022. V. 32. № 4. P. 485–487. https://doi.org/10.1016/j.mencom.2022.07.018
- 16. Shepelenko K.E., Soliev S.B., Nikolaeva K.A., Minyaev M.E., Chernyshev V.M. // Russ. Chem. Bull. 2023. V. 72. № 8. P. 1746–1752. https://doi.org/10.1007/s11172-023-3956-1
- 17. John I.G., Radom L. // J. Am. Chem. Soc. 1978. V. 100. № 13. P. 3981–3991. https://doi.org/10.1021/ja00481a001
- 18. Cao H., Rupar P.A. // Chem. Eur. J. 2017. V. 23. № 59. P. 14670–14675. https://doi.org/10.1002/chem.201703355
- 19. Karlinskii B.Ya., Romashov L.V., Galkin K.I., Kislitsyn P.G., Ananikov V.P. // Synthesis. 2019. V. 51. № 05. P. 1235–1242. https://doi.org/10.1055/s-0037-1610414
- 20. Savelyeva N.Yu., Shpirt A.M., Orlova A.V., Chizhov A.O., Kononov L.O. // Russ. Chem. Bull. 2022. V. 71. № 8. P. 1784–1793. https://doi.org/10.1007/s11172-022-3590-3
- 21. Johansson G., Sundquist S., Nordvall G., Nilsson B.M., Brisander M., Nilvebrant L., Hacksell U. // J. Med. Chem. 1997. V. 40. № 23. P. 3804–3819. https://doi.org/10.1021/jm970346t
- 22. Hashmi A., Enns E., Frost T., Schäfer S., Frey W., Rominger F. // Synthesis. 2008. V. 2008. № 20. P. 3360–3360. https://doi.org/10.1055/s-0028-1083144
- 23. Cui X., Xu X., Wojtas L., Kim M.M., Zhang X.P. // J. Am. Chem. Soc. 2012. V. 134. № 49. P. 19981–19984. https://doi.org/10.1021/ja309446n
- 24. Fakhrutdinov A.N., Karlinskii B.Ya., Minyaev M.E., Ananikov V.P. // J. Org. Chem. 2021. V. 86. № 17. P. 11456–11463. https://doi.org/10.1021/acs.joc.1c00943
- 25. Stini N.A., Gkizis P.L., Kokotos C.G. // Green Chem. 2022. V. 24. № 17. P. 6435–6449. https://doi.org/10.1039/d2gc02332f
- 26. Warlin N., Garcia Gonzalez M.N., Mankar S., Valsange N.G., Sayed M., Pyo S.-H., Rehnberg N., Lundmark S., Hatti-Kaul R., Jannasch P., Zhang B. // Green Chem. 2019. V. 21. № 24. P. 6667–6684. https://doi.org/10.1039/c9gc03055g
- 27. Hoang T.M.C., van Eck E.R.H., Bula W.P., Gardeniers J.G.E., Lefferts L., Seshan K. // Green Chem. 2015. V. 17. № 2. P. 959–972. https://doi.org/10.1039/c4gc01324g
- 28. Tsilomelekis G., Orella M.J., Lin Z., Cheng Z., Zheng W., Nikolakis V., Vlachos D.G. // Green Chem. 2016. V. 18. № 7. P. 1983–1993. https://doi.org/10.1039/c5gc01938a
- 29. Shen H., Shan H., Liu L. // ChemSusChem. 2020. V. 13. № 3. P. 513–519. https://doi.org/10.1002/cssc.201902799
- 30. Hu X., Kadarwati S., Wang S., Song Y., Hasan M.D.M., Li C.-Z. // Fuel Process. Technol. 2015. V. 137. P. 212–219. https://doi.org/10.1016/j.fuproc.2015.04.024
- 31. Motornov V., Pohl R., Klepetářová B., Beier P. // Chem. Commun. 2023. V. 59. № 61. P. 9364–9367. https://doi.org/10.1039/d3cc00987d
- 32. Bauerová I., Ludwig M. // Collect. Czech. Chem. Commun. 2000. V. 65. № 11. P. 1777–1790. https://doi.org/10.1135/cccc20001777
- 33. Nummert V., Piirsalu M., Mäemets V., Koppel I. // Collect. Czech. Chem. Commun. 2006. V. 71. № 1. P. 107–128. https://doi.org/10.1135/cccc20060107
- 34. Mangione M.I., Spanevello R.A., Anzardi M.B. // RSC Adv. 2017. V. 7. № 75. P. 47681–47688. https://doi.org/10.1039/c7ra09558a
- 35. Kozlov K.S., Romashov L.V., Ananikov V.P. // Green Chem. 2019. V. 21. № 12. P. 3464–3468. https://doi.org/10.1039/c9gc00840c
- 36. Guan Y., Buivydas T., Lalisse R.F., Ali R., Hadad C.M., Mattson A.E. // Synthesis. 2022. V. 54. № 19. P. 4210–4219. https://doi.org/10.1055/a-1811-8075