- Код статьи
 - 10.31857/S2686953524040049-1
 - DOI
 - 10.31857/S2686953524040049
 - Тип публикации
 - Статья
 - Статус публикации
 - Опубликовано
 - Авторы
 - Том/ Выпуск
 - Том 517 / Номер выпуска 1
 - Страницы
 - 33-38
 - Аннотация
 - Работа посвящена исследованию кинетики образования коллоидного золота. На основе экспериментальных данных разработана кинетическая модель, включающая стадии восстановления Au3+ и Au1+ с образованием наночастиц металлического золота. Кинетической особенностью процесса является наличие длительного периода индукции (несколько часов), при этом наблюдается увеличение периода индукции при увеличении концентрации исходного реагента (Au3+). Кинетическое моделирование показывает, что период индукции определяется процессом обратного окисления Au0 с промежуточным образованием одноэлектронного окисленного золота. Принципиальным результатом является демонстрация факта ускорения процесса образования наночастиц золота (уменьшение периода индукции) при введении в систему конечного продукта (Au0), что является однозначным признаком автокаталитического процесса. Сделаны оценки констант скоростей всех элементарных стадий реакции и установлено, что самым медленным процессом является первая стадия восстановления Au3+.
 - Ключевые слова
 - коллоидное золото кинетическая модель автокатализ наночастицы золота динамика процесса
 - Дата публикации
 - 15.06.2024
 - Год выхода
 - 2024
 - Всего подписок
 - 0
 - Всего просмотров
 - 61
 
Библиография
- 1. Faraday M. Experimental researches in chemistry and physics. London, Taylor & Francis, 1859. 496 p.
 - 2. Сергеев Г.Б. Нанохимия: учеб. пособие. М.: КДУ, 2015. 284 с.
 - 3. Lo Nigro R., Fiorenza P., Pécz B., Eriksson J. // Nanomaterials. 2022. V. 12. № 19. P. 3319 https://doi.org/10.3390/nano12193319
 - 4. Апяри В.В., Дмитриенко С.Г., Горбунова М.В., Фурлетов А.А., Золотов Ю.А. // Журн. аналит. химии. 2019. Т. 74. № 1. С. 26‒38. https://doi.org/10.1134/S0044450219010055
 - 5. Дурович Е.А., Евтушенко Е.Г., Сенько О.В., Степанов Н.А., Ефременко Е.Н., Еременко А.В., Курочкин И.Н. // Вестник РГМУ. 2018. № 6. С. 27–35. https://doi.org/10.24075/vrgmu.2018.088
 - 6. Варфоломеев С.Д. Молекулярные основы интеллекта. М.: МГУ, 2024. 290 с.
 - 7. Коршунов А.В., Кашкан Г.В., Нгуен Х.Т.Т., Зыонг Ш.В. // Изв. ТПУ. 2011. Т. 318. № 3. С. 12‒18. http://earchive.tpu.ru/handle/11683/3644
 - 8. Haruta M. // Gold Bull. 2004. V. 37. P. 27–36. https://doi.org/10.1007/BF03215514
 - 9. Hutchings G.J. Catalysis by gold: Recent advances in oxidation reactions. In: Nanotechnology in catalysis. Nanostructure science and technology. Zhou B., Han S., Raja R., Somorjai G.A. (eds.). Springer, New York, NY, 2007. pp. 39–54. https://doi.org/10.1007/978-0-387-34688-5_4
 - 10. Turkevich J., Stevenson P.C., Hillier J. // Discuss. Faraday Soc. 1951. V. 11. P. 55–75. https://doi.org/10.1039/DF9511100055
 - 11. Polte J., Ahner T.T., Delissen F., Sokolov S., Emmerling F., Thünemann A.F., Kraehnert R. // J. Amer. Chem. Soc. 2010. V. 132. № 4. P. 1296–1301. https://doi.org/10.1021/ja906506j
 - 12. Patungwasa W., Hodak J.H. // Mater. Chem. Phys. 2008. V. 108. № 1. P. 45–54. https://doi.org/10.1016/j.matchemphys.2007.09.001
 - 13. Ахметов Н.С. Неорганическая химия. М.: Высшая школа. 1975. 672 с.
 - 14. Варфоломеев С.Д. Динамика неустойчивости. Кинетическое моделирование и методы управления. М.: Научный мир. 2021. 282 с.