Президиум РАНДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

Кинетические закономерности синтеза наночастиц золота. Автокаталитический механизм процесса

Код статьи
10.31857/S2686953524040049-1
DOI
10.31857/S2686953524040049
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 517 / Номер выпуска 1
Страницы
33-38
Аннотация
Работа посвящена исследованию кинетики образования коллоидного золота. На основе экспериментальных данных разработана кинетическая модель, включающая стадии восстановления Au3+ и Au1+ с образованием наночастиц металлического золота. Кинетической особенностью процесса является наличие длительного периода индукции (несколько часов), при этом наблюдается увеличение периода индукции при увеличении концентрации исходного реагента (Au3+). Кинетическое моделирование показывает, что период индукции определяется процессом обратного окисления Au0 с промежуточным образованием одноэлектронного окисленного золота. Принципиальным результатом является демонстрация факта ускорения процесса образования наночастиц золота (уменьшение периода индукции) при введении в систему конечного продукта (Au0), что является однозначным признаком автокаталитического процесса. Сделаны оценки констант скоростей всех элементарных стадий реакции и установлено, что самым медленным процессом является первая стадия восстановления Au3+.
Ключевые слова
коллоидное золото кинетическая модель автокатализ наночастицы золота динамика процесса
Дата публикации
18.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
2

Библиография

  1. 1. Faraday M. Experimental researches in chemistry and physics. London, Taylor & Francis, 1859. 496 p.
  2. 2. Сергеев Г.Б. Нанохимия: учеб. пособие. М.: КДУ, 2015. 284 с.
  3. 3. Lo Nigro R., Fiorenza P., Pécz B., Eriksson J. // Nanomaterials. 2022. V. 12. № 19. P. 3319 https://doi.org/10.3390/nano12193319
  4. 4. Апяри В.В., Дмитриенко С.Г., Горбунова М.В., Фурлетов А.А., Золотов Ю.А. // Журн. аналит. химии. 2019. Т. 74. № 1. С. 26‒38. https://doi.org/10.1134/S0044450219010055
  5. 5. Дурович Е.А., Евтушенко Е.Г., Сенько О.В., Степанов Н.А., Ефременко Е.Н., Еременко А.В., Курочкин И.Н. // Вестник РГМУ. 2018. № 6. С. 27–35. https://doi.org/10.24075/vrgmu.2018.088
  6. 6. Варфоломеев С.Д. Молекулярные основы интеллекта. М.: МГУ, 2024. 290 с.
  7. 7. Коршунов А.В., Кашкан Г.В., Нгуен Х.Т.Т., Зыонг Ш.В. // Изв. ТПУ. 2011. Т. 318. № 3. С. 12‒18. http://earchive.tpu.ru/handle/11683/3644
  8. 8. Haruta M. // Gold Bull. 2004. V. 37. P. 27–36. https://doi.org/10.1007/BF03215514
  9. 9. Hutchings G.J. Catalysis by gold: Recent advances in oxidation reactions. In: Nanotechnology in catalysis. Nanostructure science and technology. Zhou B., Han S., Raja R., Somorjai G.A. (eds.). Springer, New York, NY, 2007. pp. 39–54. https://doi.org/10.1007/978-0-387-34688-5_4
  10. 10. Turkevich J., Stevenson P.C., Hillier J. // Discuss. Faraday Soc. 1951. V. 11. P. 55–75. https://doi.org/10.1039/DF9511100055
  11. 11. Polte J., Ahner T.T., Delissen F., Sokolov S., Emmerling F., Thünemann A.F., Kraehnert R. // J. Amer. Chem. Soc. 2010. V. 132. № 4. P. 1296–1301. https://doi.org/10.1021/ja906506j
  12. 12. Patungwasa W., Hodak J.H. // Mater. Chem. Phys. 2008. V. 108. № 1. P. 45–54. https://doi.org/10.1016/j.matchemphys.2007.09.001
  13. 13. Ахметов Н.С. Неорганическая химия. М.: Высшая школа. 1975. 672 с.
  14. 14. Варфоломеев С.Д. Динамика неустойчивости. Кинетическое моделирование и методы управления. М.: Научный мир. 2021. 282 с.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека