RAS PresidiumДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

Kinetic Regularities of Nanogold Synthesis. Auto-Catalytic Mechanism of the Process

PII
10.31857/S2686953524040049-1
DOI
10.31857/S2686953524040049
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 517 / Issue number 1
Pages
33-38
Abstract
The work is devoted to the study of the kinetics of colloidal gold formation. On the basis of experimental data, a kinetic model including the stages of Au3+ and Au1+ reduction with the formation of metallic gold nanoparticles was developed. A kinetic feature of the process is the presence of a long induction period (several hours), while an increase in the induction period is observed with increasing concentration of the initial reagent (Au3+). Kinetic modeling shows that the induction period is determined by the process of reverse oxidation of Au0 with intermediate formation of one-electron oxidized gold. The principal result is the demonstration of the fact of acceleration of the process gold nanoparticles formation (reduction of the induction period) when the final product (Au0) is introduced into the system, which is an unambiguous sign of the autocatalytic process. Estimates of rate constants of all elementary stages of the reaction have been made, the slowest process being the first stage of Au3+ reduction.
Keywords
коллоидное золото кинетическая модель автокатализ наночастицы золота динамика процесса
Date of publication
18.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Faraday M. Experimental researches in chemistry and physics. London, Taylor & Francis, 1859. 496 p.
  2. 2. Сергеев Г.Б. Нанохимия: учеб. пособие. М.: КДУ, 2015. 284 с.
  3. 3. Lo Nigro R., Fiorenza P., Pécz B., Eriksson J. // Nanomaterials. 2022. V. 12. № 19. P. 3319 https://doi.org/10.3390/nano12193319
  4. 4. Апяри В.В., Дмитриенко С.Г., Горбунова М.В., Фурлетов А.А., Золотов Ю.А. // Журн. аналит. химии. 2019. Т. 74. № 1. С. 26‒38. https://doi.org/10.1134/S0044450219010055
  5. 5. Дурович Е.А., Евтушенко Е.Г., Сенько О.В., Степанов Н.А., Ефременко Е.Н., Еременко А.В., Курочкин И.Н. // Вестник РГМУ. 2018. № 6. С. 27–35. https://doi.org/10.24075/vrgmu.2018.088
  6. 6. Варфоломеев С.Д. Молекулярные основы интеллекта. М.: МГУ, 2024. 290 с.
  7. 7. Коршунов А.В., Кашкан Г.В., Нгуен Х.Т.Т., Зыонг Ш.В. // Изв. ТПУ. 2011. Т. 318. № 3. С. 12‒18. http://earchive.tpu.ru/handle/11683/3644
  8. 8. Haruta M. // Gold Bull. 2004. V. 37. P. 27–36. https://doi.org/10.1007/BF03215514
  9. 9. Hutchings G.J. Catalysis by gold: Recent advances in oxidation reactions. In: Nanotechnology in catalysis. Nanostructure science and technology. Zhou B., Han S., Raja R., Somorjai G.A. (eds.). Springer, New York, NY, 2007. pp. 39–54. https://doi.org/10.1007/978-0-387-34688-5_4
  10. 10. Turkevich J., Stevenson P.C., Hillier J. // Discuss. Faraday Soc. 1951. V. 11. P. 55–75. https://doi.org/10.1039/DF9511100055
  11. 11. Polte J., Ahner T.T., Delissen F., Sokolov S., Emmerling F., Thünemann A.F., Kraehnert R. // J. Amer. Chem. Soc. 2010. V. 132. № 4. P. 1296–1301. https://doi.org/10.1021/ja906506j
  12. 12. Patungwasa W., Hodak J.H. // Mater. Chem. Phys. 2008. V. 108. № 1. P. 45–54. https://doi.org/10.1016/j.matchemphys.2007.09.001
  13. 13. Ахметов Н.С. Неорганическая химия. М.: Высшая школа. 1975. 672 с.
  14. 14. Варфоломеев С.Д. Динамика неустойчивости. Кинетическое моделирование и методы управления. М.: Научный мир. 2021. 282 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library