RAS PresidiumДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

Preparation of copper and nickel based nanoparticles by magnetron sputtering and their use in sulfur–sulfur bond activation reaction

PII
10.31857/S2686953524050022-1
DOI
10.31857/S2686953524050022
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 518 / Issue number 1
Pages
23-31
Abstract
The present work is devoted to a systematic study of the advantages and limitations of the magnetron sputtering method, which is a convenient and promising way to obtain nanosized particles directly from the bulk metal, when it is used to prepare nanoparticles of the first-row transition metals. In the course of the study, variation of sputtering media based on ionic liquids, eutectic solvents, low and high molecular weight organic compounds was carried out. Particles of copper, nickel, a copper-nickel alloy and a copper-zinc alloy were obtained. Using the example of the activation reaction of the sulfur–sulfur bond in diphenyl disulfide, it has been shown that up to 96% of the sputtered copper can be effectively used in catalysis, whereas in the case of nickel and zinc about three quarters of the metal can be converted to an inactive form, at the same time readily oxidizable components can act as sacrificial stabilizers for moderately active metal particles in sputtering two-component alloys.
Keywords
наночастицы металлов тиоляты металлов магнетронное распыление электронная микроскопия ионные жидкости
Date of publication
18.09.2025
Year of publication
2025
Number of purchasers
0
Views
6

References

  1. 1. Biffis A., Centomo P., Del Zotto A., Zecca M. // Chem. Rev. 2018. V. 118. № 4. P. 2249–2295. http s://doi.org/10.1021/acs.chemrev.7b00443
  2. 2. Dalton T., Faber T., Glorius F. // ACS Cent. Sci. 2021. V. 7. № 2. P. 245–261. http s://doi.org/10.1021/acscentsci.0c01413
  3. 3. Chan A.Y., Perry I.B., Bissonnette N.B., Buksh B.F., Edwards G.A., Frye L.I., Garry O.L., Lavagnino M.N., Li B.X., Liang Y., Mao E., Millet A., Oakley J.V., Reed N.L., Sakai H.A., Seath C.P., MacMillan D.W.C. // Chem. Rev. 2022. V. 122. № 2. P. 1485–1542. http s://doi.org/10.1021/acs.chemrev.1c00383
  4. 4. Devendar P., Qu R.-Y., Kang W.-M., He B., Yang G.-F. // J. Agric. Food Chem. 2018. V. 66. № 34. P. 8914–8934. http s://doi.org/10.1021/acs.jafc.8b03792
  5. 5. Hayler J.D., Leahy D.K., Simmons E.M. // Organometallics. 2019. V. 38. № 1. P. 36–46. http s://doi.org/10.1021/acs.organomet.8b00566
  6. 6. Xia Y., Yang H., Campbell C.T. // Acc. Chem. Res. 2013. V. 46. № 8. P. 1671–1672. http s://doi.org/10.1021/ar400148q
  7. 7. Xie C., Niu Z., Kim D., Li M., Yang P. // Chem. Rev. 2020. V. 120. № 2. P. 1184–1249. http s://doi.org/10.1021/acs.chemrev.9b00220
  8. 8. Astruc D. // Chem. Rev. 2020. V. 120. № 2. P. 461–463. http s://doi.org/10.1021/acs.chemrev.8b00696
  9. 9. Hong K., Sajjadi M., Suh J.M., Zhang K., Nasrollahzadeh M., Jang H.W., Varma R.S., Shokouhimehr M. // ACS Appl. Nano Mater. 2020. V. 3. № 3. P. 2070–2103. http s://doi.org/10.1021/acsanm.9b02017
  10. 10. Ohtaka A. // Catalysts. 2021. V. 11. № 11. P. 1266. http s://doi.org/10.3390/catal11111266
  11. 11. Cha J.-H., Park S.-M., Hong Y.K., Lee H., Kang J.W., Kim K.-S. // J. Nanosci. Nanotechnol. 2012. V. 12. № 4. P. 3641–3645. http s://doi.org/10.1166/jnn.2012.5590
  12. 12. Cloud J.E., McCann K., Perera K.A.P., Yang Y. // Small. 2013. V. 9. № 15. P. 2532–2536. http s://doi.org/10.1002/smll.201202470
  13. 13. Cloud J.E., Yoder T.S., Harvey N.K., Snow K., Yang Y. // Nanoscale. 2013. V. 5. № 16. P. 7368–7378. http s://doi.org/10.1039/c3nr02404k
  14. 14. Sarcina L., García-Manrique P., Gutiérrez G., Ditaranto N., Cioffi N., Matos M., Blanco-López M.d.C. // Nanomaterials. 2020. V. 10. № 8. P. 1542. http s://doi.org/10.3390/nano10081542
  15. 15. Zhang J., Chaker M., Ma D. // J. Colloid Interface Sci. 2017. V. 489. P. 138–149. http s://doi.org/10.1016/j.jcis.2016.07.050
  16. 16. Jiang Z., Li L., Huang H., He W., Ming W. // Int. J. Mol. Sci. 2022. V. 23. № 23. P. 14658. http s://doi.org/10.3390/ijms232314658
  17. 17. Balachandran A., Sreenilayam S.P., Madanan K., Thomas S., Brabazon D. // Results Eng. 2022. V. 16. P. 100646. http s://doi.org/10.1016/j.rineng.2022.100646
  18. 18. Nyabadza A., Vazquez M., Brabazon D. // Crystals. 2023. V. 13. № 2. P. 253. http s://doi.org/10.3390/cryst13020253
  19. 19. Wender H., Migowski P., Feil A.F., Teixeira S.R., Dupont J. // Coord. Chem. Rev. 2013. V. 257. № 17–18. P. 2468–2483. http s://doi.org/10.1016/j.ccr.2013.01.013
  20. 20. Cha I.Y., Yoo S.J., Jang J.H. // J. Electrochem. Sci. Technol. 2016. V. 7. № 1. P. 13–26. http s://doi.org/10.5229/JECST.2016.7.1.19
  21. 21. Qadir M.I., Kauling A., Ebeling G., Fartmann M., Grehl T., Dupont J. // Aust. J. Chem. 2019. V. 72. № 2. P. 49–54. http s://doi.org/10.1071/CH18183
  22. 22. Cano I., Weilhard A., Martin C., Pinto J., Lodge R.W., Santos A.R., Rance G.A., Åhlgren E.H., Jónsson E., Yuan J., Li Z.Y., Licence P., Khlobystov A.N., Alves Fernandes J. // Nat. Commun. 2021. V. 12. P. 4965. http s://doi.org/10.1038/s41467-021-25263-6
  23. 23. Nguyen M.T., Deng L., Yonezawa T. // Soft Matter. 2022. V. 18. № 1. P. 19–47. http s://doi.org/10.1039/D1SM01002F
  24. 24. Hirano M., Enokida K., Okazaki K.-i., Kuwabata S., Yoshida H., Torimoto T. // Phys. Chem. Chem. Phys. 2013. V. 15. № 19. P. 7286–7294. http s://doi.org/10.1039/c3cp50816a
  25. 25. Zhou Y.-Y., Liu C.-H., Liu J., Cai X.-L., Lu Y., Zhang H., Sun X.-H., Wang S.-D. // Nano-Micro Lett. 2016. V. 8. № 4. P. 371–380. http s://doi.org/10.1007/s40820-016-0096-2
  26. 26. Liu C., Cai X., Wang J., Liu J., Riese A., Chen Z., Sun X., Wang S.-D. // Int. J. Hydrogen Energy. 2016. V. 41. № 31. P. 13476–13484. http s://doi.org/10.1016/j.ijhydene.2016.05.194
  27. 27. Sriram P., Kumar M.K., Selvi G.T., Jha N.S., Mohanapriya N., Jha S.K. // Electrochim. Acta. 2019. V. 323. P. 134809. http s://doi.org/10.1016/j.electacta.2019.134809
  28. 28. Tsuda T., Yoshii K., Torimoto T., Kuwabata S. // J. Power Sources. 2010. V. 195. № 18. P. 5980–5985. http s://doi.org/10.1016/j.jpowsour.2009.11.027
  29. 29. Cha I.Y., Ahn M., Yoo S.J., Sung Y.-E. // RSC Adv. 2014. V. 4. № 73. P. 38575–38580. http s://doi.org/10.1039/C4RA05213G
  30. 30. Zhu M., Nguyen M.T., Sim W.J., Yonezawa T. // Mater. Adv. 2022. V. 3. № 24. P. 8967–8976. http s://doi.org/10.1039/D2MA00688J
  31. 31. Chung M.W., Cha I.Y., Ha M.G., Na Y., Hwang J., Ham H.C., Kim H.-J., Henkensmeier D., Yoo S.J., Kim J.Y., Lee S.Y., Park H.S., Jang J.H. // Appl. Catal. B: Environ. 2018. V. 237. P. 673–680. http s://doi.org/10.1016/j.apcatb.2018.06.022
  32. 32. Oda Y., Hirano K., Yoshii K., Kuwabata S., Torimoto T., Miura M. // Chem. Lett. 2010. V. 39. № 10. P. 1069–1071. http s://doi.org/10.1246/cl.2010.1069
  33. 33. Luza L., Gual A., Eberhardt D., Teixeira S.R., Chiaro S.S.X., Dupont J. // ChemCatChem. 2013. V. 5. № 8. P. 2471–2478. http s://doi.org/10.1002/cctc.201300123
  34. 34. Chang J.-B., Liu C.-H., Liu J., Zhou Y.-Y., Gao X., Wang S.-D. // Nano-Micro Lett. 2015. V. 7. № 3. P. 307–315. http s://doi.org/10.1007/s40820-015-0044-6
  35. 35. Liu C.-H., Liu J., Zhou Y.-Y., Cai X.-L., Lu Y., Gao X., Wang S.-D. // Carbon. 2015. V. 94. P. 295–300. http s://doi.org/10.1016/j.carbon.2015.07.003
  36. 36. Kashin A.S., Prima D.O., Arkhipova D.M., Ananikov V.P. // Small. 2023. V. 19. № 43. P. 2302999. http s://doi.org/10.1002/smll.202302999
  37. 37. Lee C.-F., Liu Y.-C., Badsara S.S. // Chem. – Asian J. 2014. V. 9. № 3. P. 706–722. http s://doi.org/10.1002/asia.201301500
  38. 38. Lee C.-F., Basha R.S., Badsara S.S. // Top. Curr. Chem. 2018. V. 376. № 3. P. 25. http s://doi.org/10.1007/s41061-018-0203-6
  39. 39. Beletskaya I.P., Ananikov V.P. // Chem. Rev. 2022. V. 122. № 21. P. 16110–16293. http s://doi.org/10.1021/acs.chemrev.1c00836
  40. 40. Kashin A.S., Arkhipova D.M., Sahharova L.T., Burykina J.V., Ananikov V.P. // ACS Catal. 2024. V. 14. № 8. P. 5804–5816. http s://doi.org/10.1021/acscatal.3c06258
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library