RAS PresidiumДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

Oxygen exchange and mechanism of oxygen intake by complex oxides with a swedenborgite structure

PII
S3034511125010036-1
DOI
10.7868/S3034511125010036
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 520 / Issue number 1
Pages
23-32
Abstract
The kinetics of oxygen sorption from air by Y0.8Ca0.2BaCo4-xFexO7+δ (x = 0, 1) is studied by nonisothermal thermogravimetric measurements. The activation energy is calculated by model-free methods of Friedman, Starink and Vyazovkin. The master plot and Coates–Redfern methods are applied to determine the mechanism of oxygen intake. The results show the activation energies and frequency factors are 189 and 197 kJ mol–1 and 4.7 × 1013 and 2.3 × 1014 min–1 in Y0.8Ca0.2BaCo4O7+δ and Y0.8Ca0.2BaCo3FeO7+δ, respectively. The arguments are given in proof of oxygen sorption determined by the volume random nucleation and growth of the oxygen-rich nuclei.
Keywords
кобальтиты кислородный обмен кинетический анализ
Date of publication
18.09.2025
Year of publication
2025
Number of purchasers
0
Views
5

References

  1. 1. Vieten J., Bulfin B., Call F., Lange M., Schmücker M., Francke A., Roeb M., Sattler C. // J. Mater. Chem. A. 2016. V. 4. P. 13652–13659. https://doi.org/10.1039/C6TA04867F
  2. 2. Tescari S., Agrafiotis C., Breuer S., de Oliveira L., Neisesvon Puttkamer M., Roeb M., Sattler C. // Energy Procedia. 2014. V. 49. P. 1034–1043. https://doi.org/10.1016/j.egypro.2014.03.111
  3. 3. Kodama T., Gokon N. // Chem. Rev. 2007. V. 107. P. 4048–4077. https://doi.org/10.1021/cr050188a
  4. 4. Karppinen M., Yamauchi H., Otani S., Fujita T., Motohashi T., Huang Y.-H., Valkeappa M., Fjellvag H. // Chem. Mater. 2006. V. 18. P. 490–494. https://doi.org/10.1021/cm0523081
  5. 5. Hao H., Cui J., Chen C., Pan L., Hu J., Hu X. // Solid State Ion. 2006. V. 177. P. 631–637. https://doi.org/10.1016/j.ssi.2006.01.030
  6. 6. Chen T., Hasegawa T., Asakura Y., Kakihana M, Motohashi T., Yin S. // ACS Appl. Mater. Interfaces. 2021. V. 13. P. 51008–51017. https://doi.org/10.1021/acsami.1c15419
  7. 7. Nagai Y., Yamamoto T., Tanaka T., Youhida S., Nonaka T., Okamoto T., Suda A., Suqiura M. // Catal. Today. 2002. V. 74. P. 225–234. https://doi.org/10.1016/S0920-5861 (02)00025-1
  8. 8. Kaspar J., Fornasiero P. // J. Solid State Chem. 2003. V. 171. P. 19–29. https://doi.org/10.1016/S0022-4596 (02)00141-X
  9. 9. Rasanen S., Yamauchi H., Karppinen M. // Chem. Lett. 2008. V. 37. P. 638–639. https://doi.org/10.1246/cl.2008.638
  10. 10. Parkkima O., Yamauchi H., Karppinen M. // Chem. Mater. 2013. V. 25. P. 599–604. https://doi.org/10.1021/cm3038729
  11. 11. Parkkima O., Karppinen M. // Eur. J. Inorg. Chem. 2014. V. 2014. № 25. P. 4056–4067. https://doi.org/10.1002/ejic.201402135
  12. 12. Motohashi T., Kadota S., Fjellvag H., Karppinen M., Yamauchi H. // Mater. Sci. Eng. B. 2008. V. 148. P. 196–198. https://doi.org/10.1016/j.mseb.2007.09.052
  13. 13. Turkin D.I., Yurchenko M.V., Tolstov K.S., Shalamova A.M., Suntsov A.Yu., Kozhevnikov V.L. // J. Solid State Chem. 2023. V. 326. P. 124194. https://doi.org/10.1016/j.jssc.2023.124194
  14. 14. Turkin D.I., Tolstov K.S., Yurchenko M.V., Suntsov A.Yu., Kozhevnikov V.L. // Inorg. Mater. 2023. V. 59. P. 1104–1110. https://doi.org/10.1134/S0020168523100126
  15. 15. Rodríguez-Carvajal J. // Physica B. 1993. V. 192. P. 55–59. https://doi.org/10.1016/0921-4526 (93)90108-I
  16. 16. Vyazovkin S., Burnham A.K., Criado J.M., Pérez-Maqueda L.A., Popescu C., Sbirrazzuoli N. // Thermochim. Acta. 2011. V. 520. P. 1–19. https://doi.org/10.1016/j.tca.2011.03.034
  17. 17. Alekseev A.V., Kameneva M.Y., Kozeeva L.P., Lavrov A.N., Podberezskaya N.V., Smolentsev A.I., Shmakov A.N. // Bull. Russ. Acad. Sci.: Phys. 2013. Т. 77. № 2. С. 151–154. https://doi.org/10.3103/S1062873813020044
  18. 18. Cuartero V., Blasco J., Subías G., García J., Rodríguez-Velamazán J.A., Ritter C. // Inorg. Chem. 2018. V. 57. P. 3360–3370. https://doi.org/10.1021/acs.inorgchem.8b00112
  19. 19. Brown M.E., Dollimore D., Galwey A.K. Reactions in the Solid State. Amsterdam: Elsevier, 1980. 339 c.
  20. 20. Senum G., Yang R. // J. Thermal Anal. 1977. V. 11. P. 445–447. https://doi.org/10.1007/BF01903696
  21. 21. Pérez-Maqueda L.A., Criado J.M. // J. Therm. Anal. Calorim. 2020. V. 60. P. 909–915. https://doi.org/10.1023/A:1010115926340
  22. 22. Friedman H.L. // J. Polym. Sci., Part C: Polym. Lett. 1964. V. 6. P.183–195. https://doi.org/10.1002/polc.5070060121
  23. 23. Starink M.J. // Thermochim. Acta. 2003. V. 404. P. 163–176. https://doi.org/10.1016/S0040-6031 (03)00144-8
  24. 24. Vyazovkin S., Dollimore D. // J. Chem. Inf. Comp. Sci. 1996. V. 36. P. 42–45. https://doi.org/10.1021/ci950062m
  25. 25. Hou L., Yu Q., Wang T., Wang K., Qin Q., Qi Z. // Korean J. Chem. Eng. 2018. V. 35. P. 626–636. https://doi.org/10.1007/s11814-017-0332-6
  26. 26. Vyazovkin S. // Molecules. 2021. V. 26. P. 3077. https://doi.org/10.3390/molecules26113077
  27. 27. Coats A.W., Redfern J.P. // Nature. 1964. V. 201. P. 68–69. https://doi.org/10.1038/201068a0
  28. 28. Gotor F.J., Criado J.M., Malek J., Koga N. // J. Phys. Chem. A. 2000. V. 104. P. 10777–10782. https://doi.org/10.1021/jp0022205
  29. 29. De Bruijn T.J.W., De Jong W.A., Van Den Berg P.J. // Thermochim. Acta. 1981. V. 45. P. 315–325. https://doi.org/10.1016/0040-6031 (81)85091-5
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library