RAS PresidiumДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

TRANSITION METAL-FREE ACETYLENE CHEMISTRY: TRENDS AND RATES OF DEVELOPMENT. A REVIEW

PII
S3034511125020017-1
DOI
10.7868/S3034511125020017
Publication type
Review
Status
Published
Authors
Volume/ Edition
Volume 521 / Issue number 1
Pages
3-14
Abstract
Behind the modern snowballing growth of publications devoted to transition metal-catalyzed chemistry of acetylene, the works dealing with acid- and base-promoted acetylene reactions stand in the background, although acid-base catalysis, along with enzymatic one, hold a dominant place in living nature. It was acid-base catalysis that was historically first introduced into human practice, and then into research. Until now, the majority of practically important reactions involving acetylene (these are mainly Favorsky reactions: vinylation of alcohols, ethynylation of carbonyl compounds, prototropic isomerization of alkynes, rearrangement of α-haloketones) represent base-catalyzed processes. Over the last decades, transition metal-free acetylene chemistry was progressing owing to the employment of superbases and superacids for the activation of the triple carbon-carbon bond. In the present paper, using recent publications of the authors (2021), the advances in application of superbase media in the chemistry of alkynes are surveyed. Also, the usage of electron-deficient acetylenes as objects especially sensitive to the action of bases in the search for new preparative reactions with participation of the triple carbon-carbon bond is analyzed. A short period (one year) was chosen in order to clearly illustrate the dynamics and efficiency of research in this area.
Keywords
ацетилен супероснования органический синтез гетероциклические соединения
Date of publication
02.04.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Dickstein J.I., Miller S.I. Ch. 19. Nucleophalic attacks on acetylenes. In: The chemistry of the carbon-carbon triple bond. Ch. 19. Patai S. (еd.). Wiley, Chichester, UK, 1978. P. 813-955. https://doi.org/10.1002/9780470771570.ch8
  2. 2. Schmidt E.Yu., Semenova N.V., Ushakov I.A., Vashchenko A.V., Trofimov B.A. // Org. Lett. 2021. V. 23. P. 4743-4748. https://doi.org/10.1021/acs.orglett.1c01460
  3. 3. Absalyamov D.Z., Vitkovskaya N.M., Orel V.B., Schmidt E.Yu., Trofimov B.A. // Asian J. Org. Chem. 2023. V. 12. e202300042. https://doi.org/10.1002/ajoc.202300042
  4. 4. Muñiz K. // J. Am. Chem. Soc. 2007. V. 129. P. 14542-14543. https://doi.org/10.1021/ja075655f
  5. 5. Sridharan V., Ribelles P., Estévez V., Villacampa M., Ramos M.T., Perumal P.T., Menéndez J.C. // Chem. Eur. J. 2012. V. 18. P. 5056-5063. https://doi.org/10.1002/chem.201103562
  6. 6. Jin C.-Y., Wang Y., Liu Y.-Z., Shen C., Xu P.-F. // J. Org. Chem. 2012. V. 77. P. 11307-11312. https://doi.org/10.1021/jo301886j
  7. 7. Feng J.-J., Zhang J. // ACS Catal. 2016. V. 6. P. 6651-6661. https://doi.org/10.1021/acscatal.6b02072
  8. 8. Bhat C., Tilve S.G. // RSC Adv. 2014. V. 4. P. 5405-5452. https://doi.org/10.1002/chin.201416274
  9. 9. Trepos R., Cervin G., Hellio C., Pavia H., Stensen W., Stensvåg K., Svendsen J.-S., Haug T., Svenson J. // J. Nat. Prod. 2014. V. 77. P. 2105-2113. https://doi.org/10.1021/np5005032
  10. 10. Schmidt E.Yu., Semenova N.V., Tatarinova I.V., Ushakov I.A., Vashchenko A.V., Trofimov B.A. // Eur. J. Org. Chem. 2021. V. 2021. P. 2802-2806. https://doi.org/10.1002/ejoc.202100377
  11. 11. Schmidt E.Yu., Trofimov B.A., Zorina N.V., Mikhaleva A.I., Ushakov I.A., Skital’tseva E.V., Kazheva O.N., Alexandrov G.G., Dyachenko O.A. // Eur. J. Org. Chem. 2010. V. 2010. P. 6727-6730. https://doi.org/10.1002/ejoc.201001229
  12. 12. Bidusenko I.A., Schmidt E.Yu., Ushakov I.A., Trofimov B.A. // Eur. J. Org. Chem. 2018. V. 2018. P. 4845-4849. https://doi.org/10.1002/ejoc.201800850
  13. 13. Schmidt E.Yu., Trofimov B.A. // Russ. Chem. Rev. 2024. V. 93. RCR5145. https://doi.org/10.59761/RCR5145
  14. 14. Bidusenko I.A., Schmidt E.Yu., Ushakov I.A., Vashchenko A.V., Trofimov B.A. // Org. Lett. 2021. V. 23. P. 4121-4126. https://doi.org/10.1021/acs.orglett.1c01009
  15. 15. Whittaker R.E., Dermenci A., Dong G. // Synthesis. 2016. V. 48. P. 161-183. https://doi.org/10.1055/s-0035-1560515
  16. 16. Nájera C., Sydnes L.K., Yus M. // Chem. Rev. 2019. V. 119. P. 11110-11244. https://doi.org/10.1021/acs.chemrev.9b00277
  17. 17. Li Y., Yu J., Bi Y., Yan G., Huang D. // Adv. Synth. Catal. 2019. V. 361. P. 4839-4881. https://doi.org/10.1002/adsc.201900611
  18. 18. Wang Z.-Y., Wang K.-K., Chen R., Liu H., Chen K. // Eur. J. Org. Chem. 2020. V. 2020. P. 2456-2474. https://doi.org/10.1002/ejoc.201901921
  19. 19. Worch J.C., Stubbs C.J., Price M.J., Dove A.P. // Chem. Rev. 2021. V. 121. P. 6744-6776. https://doi.org/10.1021/acs.chemrev.0c01076
  20. 20. Trofimov B.A., Schmidt E.Yu., Zorina N.V., Ivanova E.V., Ushakov I.A. // J. Org. Chem. 2012. V. 77. P. 6880-6886. https://doi.org/10.1021/jo301005p
  21. 21. Shabalin D.A., Dvorko M.Yu., Schmidt E.Yu., Trofimov B.A. // Org. Biomol. Chem. 2021. V. 19. P. 2703-2715. https://doi.org/10.1039/d1ob00193k
  22. 22. Fontes L.F.B., da Silva R.N., Silva A.M.S., Guieu S. // ChemPhotoChem. 2020. V. 4. P. 5312-5317. http://dx.doi.org/10.1002/cptc.202000134
  23. 23. Duan L., Chen Y., Jia J., Zong X., Sun Z., Wu Q., Xue S. // ACS Appl. Energy Mater. 2020. V. 3. P. 1672-1683. http://dx.doi.org/10.1021/acsaem.9b02152
  24. 24. Sasaki I. // Synthesis. 2016. V. 48. P.1974-1992. http://dx.doi.org/10.1055/s-0035-1561974
  25. 25. Shrestha A., Park S., Shin S., Kadayat T.M., Bist G., Katila P., Kwon Y., Lee E.-S. // Bioorg. Chem. 2018. V. 79. P. 1-18. https://doi.org/10.1016/j.bioorg.2018.03.033
  26. 26. Baloutaki B.A., Sayahi M.H., Nikpassand M., Kefayati H. // Res. Chem.Intermed. 2020. V. 46. P. 1153-1163. https://link.springer.com/article/10.1007/s11164-019-04025-6
  27. 27. Beauvarlet J., Das R.N., Alvarez-Valadez K., Martins I., Muller A., Darbo E., Richard E., Soubeyran P., Kroemer G., Guillon J., Mergny J.-L., Djavaheri-Mergny M. // Cancers. 2020. V. 12. P. 1621. https://doi.org/10.3390/cancers12061621
  28. 28. Sobenina L.N., Tomilin D.N., Trofimov B.A. // Russ. Chem. Rev. 2014. V. 83. P. 475-501. https://doi.org/10.1070/rc2014v083n06abeh004418
  29. 29. Sobenina L.N., Trofimov B.A. // Molecules. 2020. V. 25. P 2490. https://doi.org/10.3390/molecules25112490
  30. 30. Tomilin D.N., Sobenina L.N., Ushakov I.A., Trofimov B.A. // Synthesis. 2021. V. 53. P. 1137-1148. https://doi.org/10.1055/s-0040-1706474
  31. 31. Trofimov B.A., Belyaeva K.V. // Tetrahedron Lett. 2020. V. 61. P. 151991. https://doi.org/10.1016/j.tetlet.2020.151991
  32. 32. Belyaeva K.V., Nikitina L.P., Afonon A.V., Grichshenko L.A., Trofimov B.A. // J. Org. Chem. 2021. V. 86. P. 3800-3809. https://doi.org/10.1021/acs.joc.0c02644
  33. 33. Tarasova O.A., Tatarinova I.V., Vakul’skaya T.I., Khutsishvili S.S., Smirnov V.I., Klyba L.V., Prozorova G.F., Mikhaleva A.I., Trofimov B.A. // J. Organomet. Chem. 2013. V. 745-746. P. 1-7. https://doi.org/10.1016/j.jorganchem.2013.06.025
  34. 34. Tarasova O.A., Nedolya N.A., Albanov A.I., Bagryanskaya I.Yu., Trofimov B.A. // J. Organomet. Chem. 2021. V. 933. P. 121651. https://doi.org/10.1016/j.jorganchem.2020.121651
  35. 35. Шмидт Е.Ю., Трофимов Б.А. // ДАН. Химия, науки о материалах. 2022. Т. 505. С. 5-24. https://doi.org/10.31857/S268695352270008X
  36. 36. Никитина Л.П., Беляева К.В., Гень В.С., Афонин А.В., Трофимов Б.А. // ДАН. Химия, науки о материалах. 2022. Т. 506. С. 3-7. https://doi.org/10.31857/S2686953522600404
  37. 37. Bidushenko I.A., Schmidt E.Yu., Ushakov I.A., Vashchenko A.V., Protsuk N.I., Orel V.B., Vitkovskaya N.M., Trofimov B.A. // J. Org. Chem. 2022. V. 87. P. 12225-12239. https://doi.org/10.1021/acs.joc.2c01372
  38. 38. Bidushenko I.A., Schmidt E.Yu., Protsuk N.I., Ushakov I.A., Trofimov B.A. // Mendeleev Commun. 2023. V. 33. P. 24-26. https://doi.org/10.1016/j.mencom.2023.01.007
  39. 39. Schmidt E.Yu., Tatarinova I.V., Lobanova N.A., Ushakov I.A., Bagryanskaya I.Yu., Trofimov B.A. // Org. Biomol. Chem. 2023. V. 21. P. 7209-7218. https://doi.org/10.1039/d3ob01311a
  40. 40. Bidushenko I.A., Schmidt E.Yu., Protsuk N.I., Ushakov I.A., Trofimov B.A. // Mendeleev Commun. 2024. V. 34. P. 110-112. https://doi.org/10.1016/j.mencom.2024.01.033
  41. 41. Bidushenko I.A., Schmidt E.Yu., Kozlova D.O., Protsuk N.I., Ushakov I.A., Bagryanskaya I.Yu., Orel V.B., Zubarev A.A., Trofimov B.A. // Org. Lett. 2024. V. 26. P. 4963-4968. https://doi.org/10.1021/acs.orglett.4c01531
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library