RAS PresidiumДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

CRYSTALLIZATION OF THE SILICOALUMOPHOSPHATE MOLECULAR SIEVE SAPO-5 FROM REACTION GELS WITH DIFFERENT SiO/AlO RATIOS AND ITS APPLICATION IN HYDROISOMERIZATION OF -HEXADECANE

PII
S3034511125040031-1
DOI
10.7868/S3034511125040031
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 523 / Issue number 1
Pages
18-28
Abstract
Microporous silicoaluminophosphate molecular sieves SAPO-5 are considered promising acidic catalysts for hydrocarbon conversion processes. However, their catalytic performance is hindered by diffusion limitations, which can be mitigated by reducing crystal size and fine-tuning the acidic properties. The effect of the initial SiO/AlO ratio in the synthesis gel on the structural and acidic features of SAPO-5 was investigated using XPS, XRD, SEM, N adsorption—desorption, NH-TPD, and IR spectroscopy. An increase in silicon content was found to decrease crystal size and enhance the external surface area. The concentration of Bronsted acid sites reaches a maximum, suggesting limited Si incorporation into the framework. In the hydroisomerization of -hexadecane, the highest catalytic activity and selectivity towards isoparaffins were observed for the SAPO-5 sample with the smallest crystals and the highest acidity. These findings demonstrate that the structural and acidic properties of SAPO-5 can be effectively controlled through adjustment of the synthesis gel composition.
Keywords
молекулярные сита силикоалломофосфат SAPO-5 высокодисперсные кристаллы Pt-катализаторы гидроизомеризация -парафинов
Date of publication
01.08.2025
Year of publication
2025
Number of purchasers
0
Views
31

References

  1. 1. Potter M.E. // ACS Catal. 2020. № 10. P. 9758–9789. https://doi.org/10.1021/acscatal.0002278
  2. 2. Hartmann M., Elangovan S.P. // Adv. Nanoporous Mater. 2010. V. 1. P. 237–312. https://doi.org/10.1016/S1878-7959 (09)00104-2
  3. 3. Aljajan Y., Styisenko V., Rubtsova M., Glotov A. // Catalysts. 2023. № 13. P. 1363. https://doi.org/10.3390/catal13101363
  4. 4. Wang Q., Zhang W., Ma X., Liu Y., Zhang L., Zheng J., Wang Y., Li W., Fan B., Li R. // Fuel. 2023. V. 331. P. 125935. https://doi.org/10.1016/j.fuel.2022.125935
  5. 5. Baerlocher C., McCusker L.B., Olson D.H. Atlas of zeolite framework types. AMS, Elsevier, 2007. 404 p.
  6. 6. Potter M.E., Kezina J., Bourds R., Carraueta M., Mezza T.M., Raja R. // Catal. Sci. Technol. 2018. V. 8. № 20. P. 5155–5164. https://doi.org/10.1039/CSCY01370E
  7. 7. Potter M.E., Cholerton M.E., Kezina J., Bourds R., Carraueta M., Manzoli M., Gianotti E., Leferfield M., Raja R. // ACS Catal. 2014. V. 4. № 11. P. 4161–4169. https://doi.org/10.1021/ec501092b
  8. 8. Potter M.E., O'Malley A.J., Chapman S., Kezina J., Newland S.H, Silverwood I.P. // ACS Catal. 2017. V. 7. № 4. P. 2926–2934. https://doi.org/10.1021/acscatal.6003641
  9. 9. Jadav D., Bandyopadhyay R., Tsunaji N., Sadakane M., Bandyopadhyay M. // Mater. Today: Proc. 2021. V. 45. P. 3726–3732. https://doi.org/10.1016/j.matpr.2020.12.986
  10. 10. Qi J., Jin Q., Zhao K., Zhao T. // J. Porous Mater. 2015. V. 22. P. 1021–1032. https://doi.org/10.1007/s10934-015-9976-y
  11. 11. Danilina N., Krumeich F., Van Bokhoven J.A. // J. Catal. 2010. V. 272. P. 37–43. https://doi.org/10.1016/j.jcat.2010.03.014
  12. 12. Terasaka K., Imai H., Li X. // J. Adv. Chem. Eng. 2015. V. 5. № 4. 1000138. https://doi.org/10.4172/2090-4568.1000138
  13. 13. Wang L., Guo C., Yan S., Huang X., Li Q. // Microporous Mesoporous Mater. 2003. V. 64. P. 63–68. https://doi.org/10.1016/S1387-1811 (03)00482-7
  14. 14. Roldán R., Sánchez-Sánchez M., Sankar G., Romeo-Salguero F.J., Jiménez-Sanchidrán C. // Microporous Mesoporous Mater. 2007. V. 99. P. 288–298. https://doi.org/10.1016/j.micromeso.2006.09.035
  15. 15. Newland S.H., Sinkler W., Mezza T., Bare S.R., Carraueta M., Haies I.M., Levy A., Keenan S., Raja R. // ACS Catal. 2015. V. 5. P. 6587–6593. https://doi.org/10.1021/acscatal.5001595
  16. 16. Westgård Ericksen M., Svelle S., Olsbye U. // J. Catal. 2013. V. 298. P. 94–101. https://doi.org/10.1016/j.jcat.2012.11.004
  17. 17. Qiu L., Zhou Z., Yu Y., Zhang H., Qian Y., Yang Y., Duo S. // Res. Chem. Intermed. 2019. V. 45. P. 1457–73. https://doi.org/10.1007/s11164-018-3675-7
  18. 18. Zhu S., Liang S., Wang Y., Zhang X., Li F., Lin H., Zhang Z., Wang X. // Appl. Catal., B. 2016. V. 187. P. 11–18. https://doi.org/10.1016/j.apcath.2016.01.002
  19. 19. Al-Anazi A., Bellahwel O.C.K., Kavitha C., Abu-Dahrieh J., Ibrahim A.A., Santhosh S., Abasaeed A.E., Fakeeha A.H., Al-Fatesh A.S. // Catalysts. 2024. V. 15. № 5. P. 316. https://doi.org/10.3390/catal14050316
  20. 20. Kang L., Xu B., Li P., Wang K., Chen J., Du H., Liu Q., Zhang L., Lian X. // Nanomaterials. 2025. V. 15. P. 366. https://doi.org/10.3390/nano15050366
  21. 21. Martin C., Tosi-Pellena N., Patarin J., Coulomb J.P. // Langmuir. 1998. V. 14. P. 1774–1778. https://doi.org/10.1021/la960755c
  22. 22. Singh A.K., Yadav R., Sudarsan V., Kishore K., Upadhyayula S., Sakthivel A. // RSC Adv. 2014. V. 4. P. 8727–8734. https://doi.org/10.1039/C3RA47298A
  23. 23. Hu E., Derek A.T., Almansoori A., Wang K. // Int. J. Mater. Sci. Eng. 2014. V. 2. № 1. P. 10–14. https://doi.org/10.12720/jimsc.2.1.10-14
  24. 24. Cho K., Kim S.K., Lee E.K., Kim J.-N. // J. Nanosci. Nanotechnol. 2017. V. 17. P. 5869–5877. https://doi.org/10.1166/jnn.2017.13838
  25. 25. Hu E., Lai Z., Wang K. // J. Chem. Eng. Data. 2010. V. 55. P. 3286–3289. https://doi.org/10.1021/jc100093u
  26. 26. Xiao T., An L., Wang H. // Appl. Catal., A. 1995. V. 130. P. 187–194. https://doi.org/10.1016/0926-860X (95)00107-7
  27. 27. Basina G., AlShami D., Polychronopoulou K., Tzitzios V., Balasubramanian V., Dawayneh F., Karanikolos G.N., Al Wahedi Y. // Surf. Coat. Technol. 2018. V. 353. P. 378–386. https://doi.org/10.1016/j.surfcoat.2018.08.083
  28. 28. Barthometel D. // Zeolites. 1994. V. 14. P. 394–401. https://doi.org/10.1016/0144-2449 (94)90164-3
  29. 29. Danilina N., Castelanelli S.A., Troussard E., van Bokhoven J.A. // Catal. Today. 2011. V. 168. P. 80–85. https://doi.org/10.1016/j.cattod.2011.01.042
  30. 30. Ali D., Zeiger C.R., Azim M.M., Lein H.L., Mathisen K. // Microporous Mesoporous Mater. 2020. V. 306. P. 110364. https://doi.org/10.1016/j.micromeso.2020.110364
  31. 31. Ostrowski A., Jankowska A., Tabero A., Janiszewska E., Kowalak S. // Molecules. 2023. V. 28. P. 7312. https://doi.org/10.3390/molecules28217312
  32. 32. Serebrennikov D.V., Zabirov A.R., Saliev A.N., Yakovenko R.E., Prosochkina T.R., Fayzullina Z.R., Guskov V.Yu., Kutepov B.I., Agliullin M.R. // Gels. 2024. V. 10. P. 792. https://doi.org/10.3390/gels10120792
  33. 33. Serebrennikov D., Vlasov M., Travkina O., Filippova N., Mescheryukova E., Kuvatova R., Sabirov D., Agliullin M.R. // Chim. Tech. Acta. 2025. V. 12. № 3. 12301. P. 8676. https://doi.org/10.15826/chimtech.2025.12.3.01
  34. 34. Serebrennikov D.V., Zabirov A.R., Kuvatova R.Z., Bagdanova D.O., Malunov A.I., Dement'ev K.I., Agliullin M.R. // Petrol. Chem. 2024. V. 64. P. 1276–1285. https://doi.org/10.1134/S0965544124080188
  35. 35. Serebrennikov D.V., Zabirov A.R., Kuvatova R.Z., Bagdanova D.O., Malunov A.I., Travkina O.S., Kutepov B.I., Agliullin M.R. // Petrol. Chem. 2024. V. 64. P. 1122–1129. https://doi.org/10.1134/S0965544124060197
  36. 36. Agliullin M.R., Arzumanov S.S., Gerasimov E.Yu., Grigorieva N.G., Bikbaeva V.R., Serebrennikov D.V., Khaliullin L.M., Kutepov B.I. // CrystEngComm. 2023. V. 25. P. 3096–3107. https://doi.org/10.1039/D3CE00278K
  37. 37. Tamura M., Shimizu K., Satsuma A. // Appl. Catal., A. 2012. V. 433–434. P. 135–145. https://doi.org/10.1016/j.apcata.2012.05.008
  38. 38. Pastore H.O., Coluccia S., Marchese L. // Annu. Rev. Mater. Res. 2005. V. 35. P. 351–395. https://doi.org/10.1146/annurev.matsci.35.103103.120732
  39. 39. Höchil M., Jenrys A., Vinek H. // J. Catal. 2000. V. 190. P. 419–332. https://doi.org/10.1006/jcat.1999.2761
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library