- PII
- S3034511125040047-1
- DOI
- 10.7868/S3034511125040047
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 523 / Issue number 1
- Pages
- 29-41
- Abstract
- This article is a mini-review dedicated to liquid crystal polymers including our new experimental data on cholesteric liquid crystal composites. Liquid crystal polymers with mesogenic groups in the main chains (main-chain polymers) based on aromatic polyesters are used as super-strong heat-resistant structural materials in the automotive, aviation, and space industries. Liquid crystal polymers with mesogenic groups in the side chains (side-chain or comb-shaped polymers) are used as functional materials in optics and microelectronics for information recording and developing selective and reflective optical filters. The review presents new data from the last few years on cholesteric liquid crystal composites containing dispersions of cholesteric droplets in polyvinyl alcohol and polyurethane polymer matrices. The possibility of controlling optical properties and color of the studied liquid crystal composite films under the action of ultraviolet irradiation and mechanical deformation is demonstrated. Model diagrams are presented demonstrating changes in the spectral range of color images, as well as the possibility of recording hidden (latent) information with its subsequent visualization (verification) by mechanical deformation of liquid crystal composite films. These films can be used to protect packaging of pharmaceutical and alcoholic products from counterfeiting and falsification, as well as to protect securities and documents.
- Keywords
- жидкие кристаллы ЖК-полимеры композиционные материалы холестерическая мезофаза полимеры
- Date of publication
- 01.08.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 29
References
- 1. Шибаев В.П., Бобровский А.Ю. // Усп. хим. 2017. Т. 86. № 11. С. 1024–1072. https://doi.org/10.1070/rcr4747
- 2. Terentjev E.M. // Macromolecules. 2025. V. 58. № 6. P. 2792–2806.
- 3. Phillips A.T., Hoang J.D., White T.J. // Soft Matter. 2025. V. 21. P. 2160–2169. https://doi.org/10.1039/D5SM00059A
- 4. Шибаев В.П., Бобровский А.Ю., Бойко Н.И. // BMC. 2000. Т. 42. № 12. С. 2205–2234.
- 5. Global Industry Analysis, Inc. Liquid Crystalline Polymers (LCP) – Global Strategic Business Report. 2025. ID:6098746. 384 p. Available from: https://www.researchandmarkets.com/reports/6098746/liquid-crystalline-polymers-lcp-global
- 6. Donald A.M., Windle A.H., Hanna S. Liquid Crystalline Polymers. 2nd ed. Cambridge: Cambridge University Press, 2006. 589 p.
- 7. Liquid Crystalline Polymers Market Size, Share & COVID-19 Impact Analysis, By Type, By Application, and Regional Forecast, 2022-2029. 2025. ID: FB1106581. 250 p. Available from: https://www.fortunebusinessinsights.com/liquid-crystalline-polymers-market-106581
- 8. Бабичев А.Н., Бабушкина Н.А. Физические величины. Справочник. Григорьева И.С., Мейлихова Е.З. (ред.). М.: Энергоатомиздат, 1991. 1232 с. ISBN 5-283-04013-5
- 9. Жаркова Г.М., Соши А.С. Жидкокристаллические композиты. Новосибирск: Наука. 1994. С. 214.
- 10. Polymer Dispersed Liquid Crystals (PDLC) Market Size & Shape. 2025. ID:2931 Available from: https://www.researchnester.com/reports/polymer-dispersed-liquid-crystals-pdles-market/2931
- 11. Беляев В.В., Чилая Г.С. Жидкие кристаллы в начале XXI века. М.: ИИУ МГОУ, 2017. С. 142. ISBN 978-5-7017-2785-2
- 12. Баденко Н.В., Павлов С.Н., Шибаев В.П. // Оптический Журнал. 2025. Т. 92. № 3. С. 104–113. https://doi.org/10.17586/1023-5086-2025-92-03-104-113
- 13. Balenko N., Shibaev V., Bobrovsky A. // J. Mol. Liq. 2024. V. 401. 124637. https://doi.org/10.1016/j.molliq.2024.124637
- 14. Bobrovsky A., Shibaev V., Begdorodov V., Mikhalyonok S., Arol A., Cigi M., Hamplová V., Bubnov A. // J. Mol. Liq. 2024. V. 400. 124560. https://doi.org/10.1016/j.molliq.2024.124560
- 15. Balenko N., Shibaev V., Bobrovsky A. // Polymer. 2023. V. 281. 126119. https://doi.org/10.1016/j.polymer.2023.126119
- 16. Zhang W., Nan Y., Wu Z., Shen Y., Luo D. // Molecules. 2022. V. 27. № 14. P. 4330. https://doi.org/10.3390/molecules27144330
- 17. De Kastro L.D.C., Lub J., Oriveira O.N., Schenning A.P.H.J. // Ang. Chem. Int. Ed. 2025. V. 64. № 1. e202413559. https://doi.org/10.1002/anie.202413559
- 18. Bai Y., Brassart L. // J. Mech. Phys. Solids. 2025. V. 197. 106070. https://doi.org/10.1016/j.jmps.2025.106070
- 19. Schlafmann K.R., Alahmed M.S., Pearl H.M., White T.J. // ACS Appl. Mater. Interfaces. 2024. V. 16. № 18. P. 23780–23787. https://doi.org/10.1021/acsami.3c18367
- 20. Zhang X., Zeng S., Hu Z., Liang X., Sun Q., Huang J., Zu G. // ACS Materials Lett. 2022. V. 4. № 12. P. 2459–2468. https://doi/10.1021/acsmaterialstett.2c00798
- 21. Zhang X., Yang Y., Xue P., Valenzuela C., Chen Y., Yang X., Wang L., Feng W. // Ang. Chem. Int. Ed. 2022. V. 61. № 42. e202211030. https://doi.org/10.1002/anie.202211030
- 22. Li T., Liu F., Yang X., Hao S., Cheng Y., Li S., Zhu H., Song H. // ACS Appl. Mater. Interfaces. 2022. V. 14. № 25. P. 29261–29272. https://doi.org/10.1021/acsami.2c06662