- PII
- S30345111S2686953525030068-1
- DOI
- 10.7868/S3034511125030068
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 522 / Issue number 1
- Pages
- 42-50
- Abstract
- On the example of three compounds it is demonstrated that upon X-irradiation in nonpolar solution donor-substituted dimethyl- and dimethoxy-(diphenylacetylenes) form exciplexes with N,N-dimethylaniline via recombination of the respective radical ions with an intense magnetosensitive band of luminescence. Exciplexes of dimethyldiphenylacetylenes have the highest light production of all recombination exciplexes of diphenylacetylenes known so far. The studied compounds and their analogs as a class may be considered as potential blue emitters for organic electroluminescent systems, including magnetosensitive ones.
- Keywords
- люминесценция эксиплекс дифенилацетилен рекомбинация ион-радикальных пар магнитный эффект органический светодиод
- Date of publication
- 01.06.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 18
References
- 1. Belloni J., Delcourt M.O., Houee-Levin C., Mostafavi M. // Annu. Rep. Prog. Chem. Sect. C. Phys. Chem. 2000. V. 96. P. 225–295. https://doi.org/10.1039/B001203N
- 2. Green N.J.B., Pilling M.J., Pimblott S.M. // Int. J. Radiat. Appl. Instrum. C. Radiat. Phys. Chem. 1989. V. 34. P. 105–114. https://doi.org/10.1016/1359-0197 (89)90014-3
- 3. Anisimov O.A. Ion pairs in liquids. In: Radical ionic systems: Properties in condensed phases. V. 6. Lund A., Shiotani M. (ed.). Dordrecht, Springer, 1991. P. 285–309. https://doi.org/10.1007/978-94-011-3750-8_10
- 4. Shkrob I.A., Sauer M.C., Trifunac A.D. Radiation chemistry of organic liquids: Saturated hydrocarbons. In: Studies in physical and theoretical chemistry. V. 87. Jonah C.D., Madhava Rao B.S. (eds.). Amsterdam, Elsevier, 2001. P. 175–221. https://doi.org/10.1016/S0167-6881 (01)80011-2
- 5. Braun D. // Mater. Today. 2002. V. 5. № 6. P. 32–39. https://doi.org/10.1016/S1369-7021 (02)00637-5
- 6. Sirringhaus H. // Adv. Mater. 2014. V. 26. P. 1319–1335. https://doi.org/10.1002/adma.201304346
- 7. Chen Y., Liu R., Cai M., Shinar R., Shinar J. // Phys. Rev. B. 2012. V. 86. Art. 235442. https://doi.org/10.1103/PhysRevB.86.235442
- 8. Shinar J. // Laser. Photonics. Reviews. 2012. V. 6. P. 767–786. https://doi.org/10.1002/lpor.201100026
- 9. Tang C.W., VanSlyke S.A. // Appl. Phys. Lett. 1987. V. 51. P. 913–915. https://doi.org/10.1063/1.98799
- 10. Burroughes J.H., Bradley D.D.C., Brown A.R., Marks R.N., MacKay K., Friend R.H., Burns P.L., Holmes A.B. // Nature. 1990. V. 347. № 6293. P. 539–541. https://doi.org/10.1038/347539a0
- 11. Reineke S., Walzer K., Leo K. // Phys. Rev. B. 2007. V. 75. Art. 125328. https://doi.org/10.1103/PhysRevB.75.125328
- 12. Cocchi M., Kalinowski J., Stagni S., Muzzioli S. // Appl. Phys. Lett. 2009. V. 94. Art. 083306. https://doi.org/10.1063/1.3081491
- 13. Uoyama H., Goushi K., Shizu K., Nomura H., Adachi C. // Nature. 2012. V. 492. № 7428. P. 234–238. https://doi.org/10.1038/nature11687
- 14. Wong M.Y., Zysman-Colman E. // Adv. Mater. 2017. V. 29. Art. 1605444. https://doi.org/10.1002/adma.201605444
- 15. Rishi V., Taka A.A., Hratchian H.P., McCaslin L.M. // J. Phys. Chem. Lett. 2025. V. 16. № 21. P. 5213–5220. https://doi.org/10.1021/acs.jpclett.5c00827
- 16. Skuodis E., Tomkeviciene A., Reghu R., Peciulyte L., Ivaniuk K., Volyniuk D., Bezvikonnyi O., Bagdziunas G., Gudeika D., Grazulevicius J.V. // Dyes. Pigment. 2017. V. 139. P. 795–807. https://doi.org/10.1016/j.dyepig.2017.01.016
- 17. Sarma M., Chen L.-M., Chen Y.-S., Wong K.-T. // Mater. Sci. Eng. R. 2022. V. 150. Art. 100689. https://doi.org/10.1016/j.mser.2022.100689
- 18. Dong B., Yan J., Li G., Xu Y., Zhao B., Chen L., Wang H., Li W. // Org. Electron. 2022. V. 106. Art. 106528. https://doi.org/10.1016/j.orgel.2022.106528
- 19. Safonov A.A., Bagaturyants A.A., Sazhnikov V.A. // J. Phys. Chem. A. 2015. V. 119. P. 8182–8187. https://doi.org/10.1021/acs.jpca.5b03519
- 20. Krueger R.A., Blanquart G. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 10325–10335. https://doi.org/10.1039/C9CP02027F
- 21. do Casal M.T., Cardozo T.M. // Theor. Chem. Acc. 2020. V. 139. Art. 144. https://doi.org/10.1007/s00214-020-02658-0
- 22. Ottolenghi M. / /Acc. Chem. Res. 1973. V. 6. P. 153–160. https://doi.org/10.1021/ar50065a002
- 23. Birks J.B. // Rep. Prog. Phys. 1975. V. 38. P. 903–974. http://dx.doi.org/10.1088/0034-4885/38/8/001
- 24. Kuzmin V.A., Darmanyan A.P., Levin P.P. // Chem. Phys. Lett. 1979. V. 63. P. 509–514. https://doi.org/10.1016/0009-2614 (79)80701-0
- 25. Armstrong N.R., Wightman R.M., Gross E.M. // Annu. Rev. Phys. Chem. 2001. V. 52. P. 391–422. https://doi.org/10.1146/annurev.physchem.52.1.391
- 26. Electrogenerated chemiluminescence. Bard A.J. (ed.). Marcel Dekker, New York, 2004. 552 p.
- 27. Ketter J.B., Wightman R.M. // J. Am. Chem. Soc. 2004. V. 126. P. 10183–10189. https://doi.org/10.1021/ja047602t
- 28. Мельников А.Р., Кальнеус Е.В., Королев В.В., Дранов И.Г., Стась Д.В. // ДАН. 2013. Т. 452. С. 638–641. https://doi.org/10.1134/S0012501613100084
- 29. Melnikov A.R., Kalneus E.V., Korolev V.V., Dranov I.G., Kruppa A.I., Stass D.V. // Photochem. Photobiol. Sci. 2014. V. 13. P. 1169–1179. https://doi.org/10.1039/C3PP50432H
- 30. Ferrante C., Kensy U., Dick B. // J. Phys. Chem. 1993. V. 97. P. 13457–13463. https://doi.org/10.1021/j100153a008
- 31. Hirata Y., Okada T., Mataga N., Nomoto T. // J. Phys. Chem. 1992. V. 96. P. 6559–6563. https://doi.org/10.1021/j100195a011
- 32. Бучаченко А.А., Сагдеев Р.З., Салихов К.М., Магнитные и спиновые эффекты в химических реакциях. Новосибирск: Наука, 1978. 296 с.
- 33. Зельдович Я.Б., Бучаченко А.Л., Франкевич Е.Л. // УФН. 1988. Т. 155. С. 3–45. https://doi.org/10.3367/UFNr.0155.198805a.0003
- 34. Chakraborty B., Sengupta C., Basu S. // J. Photochem. Photobiol. 2024. V. 21. 100238. https://doi.org/10.1016/j.jpap.2024.100238
- 35. Borovkov V., Stass D., Bagryansky V., Molin Y. Study of spin-correlated radical ion pairs in irradiated solutions by optically detected EPR and related techniques. In: Applications of EPR in radiation research. Lund A., Shiotani M. (eds.). Springer, Cham, 2014. https://doi.org/10.1007/978-3-319-09216-4_17
- 36. Sonogashira K., Tohda Y., Hagihara N. // Tetrahedron Lett. 1975. V. 16. P. 4467–4470. https://doi.org/10.1016/S0040-4039 (00)91094-3
- 37. Stephens R.D., Castro C.E. // J. Org. Chem. 1963. V. 28. P. 3313-3315. https://doi.org/10.1021/jo01047a008
- 38. Василевский С.Ф., Степанов А.А. // ЖОХ. 2023 Т. 93 Вып. 10, С. 1479-1556. https://doi.org/10.31857/S0044460X23100013
- 39. Nikul’shin P.V., Fedunov R.G., Kuibida L.V., Maksimov A.M., Glebov E.M., Stass D.V. // Int. J. Mol. Sci. 2023, V. 24, Art. 7568. https://doi.org/10.3390/ijms24087568
- 40. Stass D.V., Vorotnikova N.A., Shestopalov M.A. // J. Appl. Phys. 2021. V. 129. Art. 183102. https://doi.org/10.1063/5.0049769
- 41. Verkhovlyuk V.N., Stass D.V., Lukzen N.N., Molin Y.N. // Chem. Phys. Lett. 2005. V. 413. P. 71–77. https://doi.org/10.1016/j.cplett.2005.07.060
- 42. Васильев А.В., Руденко А.П. // ЖОрХ. 1997. Т. 33. Вып. 11. С. 1639–1667.
- 43. Руденко А. П., Васильев А.В. // ЖОрХ. 1995. Т. 31. Вып. 10. С. 1502–1522.
- 44. Melnikov A.R., Davydova M.P., Sherin P.S., Korolev V.V., Stepanov A.A., Kalneus E.V., Benassi E., Vasilevsky S.F., Stass D.V. // J. Phys. Chem. A. 2018. V. 122. P. 1235–1252. https://doi.org/10.1021/acs.jpca.7b11634
- 45. Amatatsu Y., Hosokawa M. // J. Phys. Chem. A. 2004. V. 108. P. 10238−10244. https://doi.org/10.1021/jp047308n
- 46. Wierzbicka M., Bylinska I., Czaplewski C., Wiczk W. // RSC Adv. 2015, V. 5. P. 29294−29303. https://doi.org/10.1039/C5RA01077B
- 47. Koenen J.-M., Zhu X., Pan Z., Feng F., Yang J., Schanze K.S. // ACS Macro. Lett. 2014. V. 3. P. 405–409. https://doi.org/10.1021/mz500067k
- 48. Berlman I.B. Handbook of fluorescence spectra of aromatic molecules. New York: Academic Press, 1971. https://doi.org/10.1016/B978-0-12-092656-5.X5001-1
- 49. Nikul’shin P.V., Filippova E.A., Fedunov R.G., Kuibida L.V., Glebov E.M., Stass D.V. // High Energy Chem. 2023. V. 57. P. S445–S454. https://doi.org/10.1134/S0018143923090102
- 50. Sergey N.V., Verkhovlyuk V.N., Kalneus E.V., Korolev V.V., Melnikov A.R., Burdukov A.B., Stass D.V., Molin Yu.N. // Chem. Phys. Lett. 2012. V. 552. P. 32–37. https://doi.org/10.1016/j.cplett.2012.08.069
- 51. Borovkov V.I., Bagryansky V.A., Yeletskikh I.V., Molin Yu.N. // Mol. Phys. 2002. V. 100. P. 1379–1384. https://doi.org/10.1080/00268970110117908
- 52. Toriyama K., Nunome K., Iwasaki M. // J. Chem. Phys. 1982. V. 77. P. 5891–5912. https://doi.org/10.1063/1.443863