RAS PresidiumДоклады Российской академии наук. Химия, науки о материалах Doklady Chemistry

  • ISSN (Print) 2686-9535
  • ISSN (Online) 3034-5111

MAGNETOSENSITIVE LUMINESCENCE OF RECOMBINATION EXCIPLEXES OF DIMETHYL AND DIMETHOXY TOLAN WITH N,N-DIMETHYLANILINE GENERATED BY X-IRRADIATION IN NONPOLAR SOLUTION

PII
S30345111S2686953525030068-1
DOI
10.7868/S3034511125030068
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 522 / Issue number 1
Pages
42-50
Abstract
On the example of three compounds it is demonstrated that upon X-irradiation in nonpolar solution donor-substituted dimethyl- and dimethoxy-(diphenylacetylenes) form exciplexes with N,N-dimethylaniline via recombination of the respective radical ions with an intense magnetosensitive band of luminescence. Exciplexes of dimethyldiphenylacetylenes have the highest light production of all recombination exciplexes of diphenylacetylenes known so far. The studied compounds and their analogs as a class may be considered as potential blue emitters for organic electroluminescent systems, including magnetosensitive ones.
Keywords
люминесценция эксиплекс дифенилацетилен рекомбинация ион-радикальных пар магнитный эффект органический светодиод
Date of publication
01.06.2025
Year of publication
2025
Number of purchasers
0
Views
18

References

  1. 1. Belloni J., Delcourt M.O., Houee-Levin C., Mostafavi M. // Annu. Rep. Prog. Chem. Sect. C. Phys. Chem. 2000. V. 96. P. 225–295. https://doi.org/10.1039/B001203N
  2. 2. Green N.J.B., Pilling M.J., Pimblott S.M. // Int. J. Radiat. Appl. Instrum. C. Radiat. Phys. Chem. 1989. V. 34. P. 105–114. https://doi.org/10.1016/1359-0197 (89)90014-3
  3. 3. Anisimov O.A. Ion pairs in liquids. In: Radical ionic systems: Properties in condensed phases. V. 6. Lund A., Shiotani M. (ed.). Dordrecht, Springer, 1991. P. 285–309. https://doi.org/10.1007/978-94-011-3750-8_10
  4. 4. Shkrob I.A., Sauer M.C., Trifunac A.D. Radiation chemistry of organic liquids: Saturated hydrocarbons. In: Studies in physical and theoretical chemistry. V. 87. Jonah C.D., Madhava Rao B.S. (eds.). Amsterdam, Elsevier, 2001. P. 175–221. https://doi.org/10.1016/S0167-6881 (01)80011-2
  5. 5. Braun D. // Mater. Today. 2002. V. 5. № 6. P. 32–39. https://doi.org/10.1016/S1369-7021 (02)00637-5
  6. 6. Sirringhaus H. // Adv. Mater. 2014. V. 26. P. 1319–1335. https://doi.org/10.1002/adma.201304346
  7. 7. Chen Y., Liu R., Cai M., Shinar R., Shinar J. // Phys. Rev. B. 2012. V. 86. Art. 235442. https://doi.org/10.1103/PhysRevB.86.235442
  8. 8. Shinar J. // Laser. Photonics. Reviews. 2012. V. 6. P. 767–786. https://doi.org/10.1002/lpor.201100026
  9. 9. Tang C.W., VanSlyke S.A. // Appl. Phys. Lett. 1987. V. 51. P. 913–915. https://doi.org/10.1063/1.98799
  10. 10. Burroughes J.H., Bradley D.D.C., Brown A.R., Marks R.N., MacKay K., Friend R.H., Burns P.L., Holmes A.B. // Nature. 1990. V. 347. № 6293. P. 539–541. https://doi.org/10.1038/347539a0
  11. 11. Reineke S., Walzer K., Leo K. // Phys. Rev. B. 2007. V. 75. Art. 125328. https://doi.org/10.1103/PhysRevB.75.125328
  12. 12. Cocchi M., Kalinowski J., Stagni S., Muzzioli S. // Appl. Phys. Lett. 2009. V. 94. Art. 083306. https://doi.org/10.1063/1.3081491
  13. 13. Uoyama H., Goushi K., Shizu K., Nomura H., Adachi C. // Nature. 2012. V. 492. № 7428. P. 234–238. https://doi.org/10.1038/nature11687
  14. 14. Wong M.Y., Zysman-Colman E. // Adv. Mater. 2017. V. 29. Art. 1605444. https://doi.org/10.1002/adma.201605444
  15. 15. Rishi V., Taka A.A., Hratchian H.P., McCaslin L.M. // J. Phys. Chem. Lett. 2025. V. 16. № 21. P. 5213–5220. https://doi.org/10.1021/acs.jpclett.5c00827
  16. 16. Skuodis E., Tomkeviciene A., Reghu R., Peciulyte L., Ivaniuk K., Volyniuk D., Bezvikonnyi O., Bagdziunas G., Gudeika D., Grazulevicius J.V. // Dyes. Pigment. 2017. V. 139. P. 795–807. https://doi.org/10.1016/j.dyepig.2017.01.016
  17. 17. Sarma M., Chen L.-M., Chen Y.-S., Wong K.-T. // Mater. Sci. Eng. R. 2022. V. 150. Art. 100689. https://doi.org/10.1016/j.mser.2022.100689
  18. 18. Dong B., Yan J., Li G., Xu Y., Zhao B., Chen L., Wang H., Li W. // Org. Electron. 2022. V. 106. Art. 106528. https://doi.org/10.1016/j.orgel.2022.106528
  19. 19. Safonov A.A., Bagaturyants A.A., Sazhnikov V.A. // J. Phys. Chem. A. 2015. V. 119. P. 8182–8187. https://doi.org/10.1021/acs.jpca.5b03519
  20. 20. Krueger R.A., Blanquart G. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 10325–10335. https://doi.org/10.1039/C9CP02027F
  21. 21. do Casal M.T., Cardozo T.M. // Theor. Chem. Acc. 2020. V. 139. Art. 144. https://doi.org/10.1007/s00214-020-02658-0
  22. 22. Ottolenghi M. / /Acc. Chem. Res. 1973. V. 6. P. 153–160. https://doi.org/10.1021/ar50065a002
  23. 23. Birks J.B. // Rep. Prog. Phys. 1975. V. 38. P. 903–974. http://dx.doi.org/10.1088/0034-4885/38/8/001
  24. 24. Kuzmin V.A., Darmanyan A.P., Levin P.P. // Chem. Phys. Lett. 1979. V. 63. P. 509–514. https://doi.org/10.1016/0009-2614 (79)80701-0
  25. 25. Armstrong N.R., Wightman R.M., Gross E.M. // Annu. Rev. Phys. Chem. 2001. V. 52. P. 391–422. https://doi.org/10.1146/annurev.physchem.52.1.391
  26. 26. Electrogenerated chemiluminescence. Bard A.J. (ed.). Marcel Dekker, New York, 2004. 552 p.
  27. 27. Ketter J.B., Wightman R.M. // J. Am. Chem. Soc. 2004. V. 126. P. 10183–10189. https://doi.org/10.1021/ja047602t
  28. 28. Мельников А.Р., Кальнеус Е.В., Королев В.В., Дранов И.Г., Стась Д.В. // ДАН. 2013. Т. 452. С. 638–641. https://doi.org/10.1134/S0012501613100084
  29. 29. Melnikov A.R., Kalneus E.V., Korolev V.V., Dranov I.G., Kruppa A.I., Stass D.V. // Photochem. Photobiol. Sci. 2014. V. 13. P. 1169–1179. https://doi.org/10.1039/C3PP50432H
  30. 30. Ferrante C., Kensy U., Dick B. // J. Phys. Chem. 1993. V. 97. P. 13457–13463. https://doi.org/10.1021/j100153a008
  31. 31. Hirata Y., Okada T., Mataga N., Nomoto T. // J. Phys. Chem. 1992. V. 96. P. 6559–6563. https://doi.org/10.1021/j100195a011
  32. 32. Бучаченко А.А., Сагдеев Р.З., Салихов К.М., Магнитные и спиновые эффекты в химических реакциях. Новосибирск: Наука, 1978. 296 с.
  33. 33. Зельдович Я.Б., Бучаченко А.Л., Франкевич Е.Л. // УФН. 1988. Т. 155. С. 3–45. https://doi.org/10.3367/UFNr.0155.198805a.0003
  34. 34. Chakraborty B., Sengupta C., Basu S. // J. Photochem. Photobiol. 2024. V. 21. 100238. https://doi.org/10.1016/j.jpap.2024.100238
  35. 35. Borovkov V., Stass D., Bagryansky V., Molin Y. Study of spin-correlated radical ion pairs in irradiated solutions by optically detected EPR and related techniques. In: Applications of EPR in radiation research. Lund A., Shiotani M. (eds.). Springer, Cham, 2014. https://doi.org/10.1007/978-3-319-09216-4_17
  36. 36. Sonogashira K., Tohda Y., Hagihara N. // Tetrahedron Lett. 1975. V. 16. P. 4467–4470. https://doi.org/10.1016/S0040-4039 (00)91094-3
  37. 37. Stephens R.D., Castro C.E. // J. Org. Chem. 1963. V. 28. P. 3313-3315. https://doi.org/10.1021/jo01047a008
  38. 38. Василевский С.Ф., Степанов А.А. // ЖОХ. 2023 Т. 93 Вып. 10, С. 1479-1556. https://doi.org/10.31857/S0044460X23100013
  39. 39. Nikul’shin P.V., Fedunov R.G., Kuibida L.V., Maksimov A.M., Glebov E.M., Stass D.V. // Int. J. Mol. Sci. 2023, V. 24, Art. 7568. https://doi.org/10.3390/ijms24087568
  40. 40. Stass D.V., Vorotnikova N.A., Shestopalov M.A. // J. Appl. Phys. 2021. V. 129. Art. 183102. https://doi.org/10.1063/5.0049769
  41. 41. Verkhovlyuk V.N., Stass D.V., Lukzen N.N., Molin Y.N. // Chem. Phys. Lett. 2005. V. 413. P. 71–77. https://doi.org/10.1016/j.cplett.2005.07.060
  42. 42. Васильев А.В., Руденко А.П. // ЖОрХ. 1997. Т. 33. Вып. 11. С. 1639–1667.
  43. 43. Руденко А. П., Васильев А.В. // ЖОрХ. 1995. Т. 31. Вып. 10. С. 1502–1522.
  44. 44. Melnikov A.R., Davydova M.P., Sherin P.S., Korolev V.V., Stepanov A.A., Kalneus E.V., Benassi E., Vasilevsky S.F., Stass D.V. // J. Phys. Chem. A. 2018. V. 122. P. 1235–1252. https://doi.org/10.1021/acs.jpca.7b11634
  45. 45. Amatatsu Y., Hosokawa M. // J. Phys. Chem. A. 2004. V. 108. P. 10238−10244. https://doi.org/10.1021/jp047308n
  46. 46. Wierzbicka M., Bylinska I., Czaplewski C., Wiczk W. // RSC Adv. 2015, V. 5. P. 29294−29303. https://doi.org/10.1039/C5RA01077B
  47. 47. Koenen J.-M., Zhu X., Pan Z., Feng F., Yang J., Schanze K.S. // ACS Macro. Lett. 2014. V. 3. P. 405–409. https://doi.org/10.1021/mz500067k
  48. 48. Berlman I.B. Handbook of fluorescence spectra of aromatic molecules. New York: Academic Press, 1971. https://doi.org/10.1016/B978-0-12-092656-5.X5001-1
  49. 49. Nikul’shin P.V., Filippova E.A., Fedunov R.G., Kuibida L.V., Glebov E.M., Stass D.V. // High Energy Chem. 2023. V. 57. P. S445–S454. https://doi.org/10.1134/S0018143923090102
  50. 50. Sergey N.V., Verkhovlyuk V.N., Kalneus E.V., Korolev V.V., Melnikov A.R., Burdukov A.B., Stass D.V., Molin Yu.N. // Chem. Phys. Lett. 2012. V. 552. P. 32–37. https://doi.org/10.1016/j.cplett.2012.08.069
  51. 51. Borovkov V.I., Bagryansky V.A., Yeletskikh I.V., Molin Yu.N. // Mol. Phys. 2002. V. 100. P. 1379–1384. https://doi.org/10.1080/00268970110117908
  52. 52. Toriyama K., Nunome K., Iwasaki M. // J. Chem. Phys. 1982. V. 77. P. 5891–5912. https://doi.org/10.1063/1.443863
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library